Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-20T11:08:32.736Z Has data issue: false hasContentIssue false

Field Emitter Cathodes and Electric Propulsion Systems

Published online by Cambridge University Press:  14 March 2011

Colleen M. Marrese
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91100, U.S.A
James E. Polk
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91100, U.S.A
Juergen Mueller
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91100, U.S.A
Get access

Abstract

Replacing hollow and filament cathodes with field emitter (FE) cathodes could significantly improve the scalability, power, and performance of some meso- and microscale Electric Propulsion (EP) systems. The propulsion system environments and requirements and the challenges in integrating these technologies are discussed to justify the recommended cathode configurations. Required cathode technologies include low work function coatings on Si or Mo Field Emitter Array (FEA) cathodes with arc protection and electrostatic ion filters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mueller, J., AIAA-97-3058 (1997).Google Scholar
2 Schneider, P., J. Chem. Phys. 28 (4) (1958).Google Scholar
3 Genovese, A., Marcuccio, S., Petracchi, P., Andrenucci, M., AIAA-96-2725, 1996.Google Scholar
4 Tajmar, T., Ph. D. Dissertation, Vienna University of Technology (TU WEIN), Austria, 1999.Google Scholar
5 Domonkos, M. T., Ph. D. Dissertation, University of Michigan (1999).Google Scholar
6 Genovese, A., Marcuccio, S., Petracchi, P., Andrenucci, M., AIAA-96-2725 (1996).Google Scholar
7 Sohl, G., Fosnight, V.V., Goldner, S.J., Speiser, R. C., AIAA 6781 (1967).Google Scholar
8 Gorshkov, O., Muravlev, V. A., Grigoryan, V. G., Minakov, V.I, AIAA 992855 (1999).Google Scholar
9 Khayms, V., Martinez-Sanchez, M., AIAA Progress Series-Micropropulsion, (1999) in press.Google Scholar
10 Belikov, M. B., Gorshkov, O. A., Rizakhanov, R. N, Shagayda, A. A., Khartov, S. A., AIAA-99-2571 (1999).Google Scholar
11 Hruby, V., Monheiser, J., Pote, B., Rostler, P., Kolencik, AIAA-99-3534, (1999).Google Scholar
12 Taylor, G., Proceed. Royal Society, A 280, (1964).Google Scholar
13 Fehringer, M., , Rudenauer, and Steiger, W., AIAA-97-3057 (1997).Google Scholar
14 Petagna, C., von Rhoden, H., Bartoli, C., Valentian, D., IEPC 88-127 (1988).Google Scholar
15 Perel, J., Bates, T., Mahoney, J., Moore, R. D., Yihiku, A. Y., AIAA 95-2810 (1995).Google Scholar
16 Marrese, C. M., Polk, J. E., Jensen, K. L., Gallimore, A. D., Spindt, C., Fink, R. L., Tolt, Z. L., Palmer, W. D., AIAA Progress Series-Micropropulsion, (1999) in press.Google Scholar
17 Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazmuta, Y., Miyagawa, S., Morita, K., Shimizu, R., Tawara, H., Atomic Data and Nuclear Data Tables 31 (1984).Google Scholar
18 Jensen, K. L, Physics of Plasmas 6 (1999).Google Scholar
19 Mackie, W. A., Morrissey, J. L., Hindrichs, C. H., Davis, P. R., J. Vac. Sci. Technol. A 10(4) (1992).Google Scholar
20 Mackie, W. A., Hartman, R. L., Anderson, M. A., Davis, P. R., J. Vac. Sci. Technol. B 12(2) (1994).Google Scholar
21 Xie, T., Mackie, W. A., and Davis, P. R., J. Vac. Sci. Technol. B 14(3) (1996).Google Scholar
22 Lee, S., Lee, S., Lee, S., Jeon, D., Lee, K. R., J. Vac. Sci. Technol. B 15(2) (1997).Google Scholar
23 Jung, J. H., Ju, B. K., Lee, Y. H., Jang, J., Oh, M. H., J. Vac. Sci. Technol. B 17(2) (1999).Google Scholar
24 Takemura, H., Tomihari, Y., Furutake, N., Matsuno, F., Yoshiki, M., Takada, N., Okamoto, A., and Miyano, S., Tech. Digest IEEE-IEDM, 709 (1997).Google Scholar