Skip to main content Accessibility help
×
Home

Field Emission and Nanostructure of Carbon Films

  • V. I. Merkulov (a1), D. H. Lowndes (a1) and L. R. Baylor (a2)

Abstract

The results of field emission measurements of various forms of carbon films are reported. It is shown that the films' nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2 - bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HF-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2 -bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

Copyright

References

Hide All
1. Spindt, C. A., Brodie, I., Humphrey, L., and Westerberg, E. R., J. Appl. Phys. 47, 5248 (1976).
2. Himpsel, F. J., Knapp, J. A., Vechten, J. A. Van, Eastman, D. E., Phys. Rev. B 20, 624 (1979).
3. Weide, J. Van der and Nemanich, R. J., Appl. Phys. Lett. 62, 1878 (1993).
4. Coll, B. F., Jaskie, J. E., Markham, J. L., Menu, E. P., Talin, A. A., von, P. All, in Covalently Bonded Disordered Thin-Film Materials, edited by Siegal, M. P., Milne, W. I., and Jaskie, J. E., (Mater. Res. Soc. Proc., Warrendale, 1998), p. 185.
5. Zhou, D., Krauss, A. R., Corrigan, T. D., McCauley, T. G., Chang, R. P. H., and Gruen, D. M., J. Electrochem. Soc. 144, 224 (1997).
6. Zhu, W., Kochanski, G. P., Jin, S., Science 282, 1471 (1998).
7. Heer, W. A. de, Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).
8. Satyanarayana, B. S., Hart, A., Milne, W. I., and Robertson, J., Appl. Phys. Lett. 71, 1430 (1997).
9. Groning, O., Kuttel, O. M., Schaller, E., Groning, P., and Schlapbach, L., Appl. Phys. Lett. 69, 476 (1996).
10. Talin, A. A., Felter, T. E., Friedmann, T. A., Sullivan, J. P., and Siegal, M. P., J. Vac. Sci. Tech. A 14, 1719 (1996).
11. Merkulov, V. I., Lowndes, D. H., Jellison, G. E. Jr., Puretzky, A. A., and Geohegan, D. B., Appl. Phys. Lett. 73, 2591 (1998).
12. Spindt, C. A., Brodie, I., Humphrey, L., and Westerberg, E. R., J. Appl. Phys. 47, 5248 (1976).
13. Lowndes, D. H., Merkulov, V. I., Pedraza, A. J., Fowlkes, J. D., Puretzky, A. A., Geohegan, D. B., and Gellison, G. E. Jr., in Surface Engineering: Science and Technology I, edited by Kumar, A., Chung, Y.–W., Moore, J. J., and Smugeresky, J. E., (The Minerals, Metals & Materials Society, 1999), p. 113.
14. Groning, O., Kuttel, O. M., Schaller, E., Groning, P., and Schlapbach, L., Appl. Phys. Lett. 69, 476 (1996).
15. Nemanich, R. J. and Solin, S. A., Phys. Rev. B 20, 392 (1979).
16. Merkulov, V. I., Lannin, J. S., Munro, C. H., Asher, S. A., Veerasamy, V. S., and Milne, W. I., Phys. Rev. Lett. 78, 4869 (1997).
17. Gilkes, K. W. R., Sands, H. S., Batchelder, D. N., Robertson, J., and Milne, W. I., Appl. Phys. Lett. 70, 1980 (1997).
18. Robertson, j., J. Vac. Sci. Tech. B 17, 659 (1999).
19. Lopinski, G. P., Merkulov, V. I., and Lannin, J. S., Phys. Rev. Lett. 80, 4241 (1998).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed