Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-21T07:48:35.853Z Has data issue: false hasContentIssue false

Ferroelectric-Gate Structures and Field-Effect Transistors Using (Bi,La)4Ti3O12 Films

Published online by Cambridge University Press:  17 March 2011

Eisuke Tokumitsu
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Takuya Suzuki
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Naoki Sugita
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Get access

Abstract

We have fabricated and characterized metal-ferroelectric-metal-insulator-semiconductor (MFMIS) diodes and field-effect-transistors (FETs) using (Bi,La)4Ti3O12 (BLT) films. 9-nm-thick SiO2 is used as an “I” layer. It is shown that the memory window in the capacitance-voltage (C-V) characteristics of the MFMIS structures is as large as 3V for a voltage sweep of 5V, when the area ratio of the MIS region (SI) to the ferroelectric capacitor region (SF), SI/SF, is 15. It is also demonstrated that the MFMIS-FETs using Pt/BLT(150nm)/Pt/SiO2(9nm)/Si structures have hysteresis loops due to the ferroelectric BLT film in the drain current-gate voltage (ID-VG) characteristics. Observed threshold voltage shift is 3V and excellent data retention characteristics are demonstrated for the device with an area ratio SI/SF of 15.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ross, I. M.: US Patent 2791760 (1957).Google Scholar
2. Moll, J. L. and Tarui, Y.: IEEE Trans. Electron Devices ED–10 333 (1963).Google Scholar
3. Sugibuchi, K., Kurogi, Y. and Endo, N.: J. Appl. Phys. 47 2877 (1975).Google Scholar
4. Higuma, Y., Matsui, Y., Okuyama, M., Nakagawa, T. and Hamakawa, Y.: Proc. 9th Conf. Solid State Devices, Tokyo 1977, Jpn. J. Appl. Phys. Suppl.17-1 209 (1978).Google Scholar
5. Tokumitsu, E., Nakamura, R. and Ishiwara, H.: IEEE Electron Device Lett. EDL–18 160 (1997).Google Scholar
6. Hirai, T., Fujisaki, Y., Nagashima, K., Koike, H. and Tarui, Y.: Jpn. J. Appl. Phys. 36 5908 (1997).Google Scholar
7. Tokumitsu, E., Fujii, G. and Ishiwara, H.: Appl. Phys. Lett. 75 575 (1999).Google Scholar
8. Tokumitsu, E., Fujii, G. and Ishiwara, H.: Jpn. J. Appl. Phys. 39 2125 (2000).Google Scholar
9. Nakao, Y., Nakamura, T., Kamisawa, A. and Takasu, H.: Integr. Ferroelectr. 6 23 (1995).Google Scholar
10. Nakamura, T., Nakao, Y., Kamisawa, A. and Takasu, H.: Integr. Ferroelectr. 9 179 (1995).Google Scholar
11. Fujimori, Y., Nakamura, T. and Kamisawa, A.: Jpn. J. Appl. Phys. 38 2285 (1999).Google Scholar
12. Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. and Jo, W.: Nature 401 682 (1999).Google Scholar
13. Tokumitsu, E., Isobe, T., Kijima, T. and Ishiwara, H.: 2000 Fall Meet. Materials Research Society, Boston, 2000, paper CC13.9.Google Scholar