Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T23:10:43.286Z Has data issue: false hasContentIssue false

Ferroelectric Thin Film Depositions for Various Types of FeRAMs (Ferroelectric Random Access Memories)

Published online by Cambridge University Press:  01 February 2011

Yoshihisa Fujisaki
Affiliation:
Central Research Laboratory, Hitachi Ltd. 1–280 Higashikoigakubo, Kokubunji, Tokyo 185–8601, JAPAN
Hiroshi Ishiwara
Affiliation:
Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259. Nagatsuda, Midori-ku, Yokohama 226–8503, JAPAN
Get access

Abstract

Flash memories are now widely spread and conveniently used in mobile devices such as cellular phones, pagers, PDAs (Personal Digital Assistants), digital cameras and so on. And in the coming ubiquitous era, nonvolatile solid-state memories are expected to be more and more important for these mobile devices. However, Flash memories are not perfectly suitable for these mobile devices since their power consumptions are too high, writing speeds are two slow, programming endurances are limited up to 106 cycles. To resolve these problems, numbers of new nonvolatile solid-state memories are proposed and some of them are now under development. Among these newly emerging nonvolatile memories, FeRAMs (Ferroelectric Random Access Memories) are the only ones that are now in production. However, the process and materials to produce FeRAMs have not matured yet to support the ubiquitous technologies.

In this study, we explore the process technologies and materials required for the future FeRAMs and obtained the result that the requirements can be satisfied by the known technologies at present.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Scott, J. F. and Paz de Araujo, C. A., Science 246 (1989) 1400.Google Scholar
2) Pas De Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature (London) 374 (1995) 627.Google Scholar
3) McAdams, H., Acklin, R., Blake, T., Fong, J., Lui, D., Madan, S., Moise, T., Narayan, S., Qian, N., Qui, Y., Roscher, J., Seshadri, A., Summerfelt, S., Du, X., Eliason, J., Kraus, W., Lanham, R., Li, F., Pietrzyk, C. and Rickes, J., Symp. VLSI Circuits Dig. Tech. Papers (Kyoto, Japan, June 2003) P. 175.Google Scholar
4) Fujisaki, Y., Iseki, K. and Ishiwara, H., Mat. Res. Soc. Symp. Proc. 786 (2004) E9.6.1. Google Scholar
5) Takahashi, K., Park, B-E, Aizawa, K. and Ishiwara, H., Abs. Int. Conf. Solid State Devices and Materials, Tokyo, Paper No. D1 (2004).Google Scholar
6) International Technology Roadmap for Semiconductors, 2003 Edition. (Semiconductor Industry Association, San Jose, 2003).Google Scholar
7) Das, R. R., Bhattacharya, P., Perez, W. and Katiyar, R. S., Appl. Phys. Lett. 81 (2002) 4052.Google Scholar
8) Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. and Jo, W., Nature (London) 401 (1999) 682.Google Scholar
9) Lee, H. N. and Hesse, D., Appl. Phys. Lett. 80 (2002) 1040.Google Scholar
10) Sun, Y-M., Chen, Y-C., Gan, J-Y. and Hwang, J-C., Appl. Phys. Lett. 81 (2002) 3221.Google Scholar
11) Kojima, T., Sakai, T., Watanabe, T., Funakubo, H., Saito, K. and Osada, M., Appl. Phys. Lett. 80 (2002) 2746.Google Scholar
12) Bao, D., Chiu, T-W., Wakiya, N., Shiozaki, K. and Mizutani, N., J. Appl. Phys. 93 (2003) 497.Google Scholar
13) Kojima, T., Sakai, T., Watanabe, T., Funakubo, H., Saito, K. and Osada, M., Appl. Phys. Lett. 80 (2002) 2746.Google Scholar
14) Fujisaki, Y., Iseki, K. and Ishiwara, H., Jpn. J. Appl. Phys. 42 (2003) L267.Google Scholar
15) Iseki, K., Fujisaki, Y. and Ishiwara, H., Ferroelectrics 52 (2003) 33.Google Scholar
16) Sawyer, C. B. and Tower, C. H., Phys. Rev. 35 (1930) 269.Google Scholar
17) Fujisaki, Y., Iseki, K., Ishiwara, H., Mao, M. and Bubber, R., J. Appl. Phys. 82 (2003) 3931.Google Scholar
18) Fujisaki, Y., Ogasawara, S. and Ishiwara, H., Ferroelectrics 292 (2003) 3.Google Scholar