Skip to main content Accessibility help
×
Home

Fermi-Level Effect on Group III Atom Interdiffusion in III-V Compounds: Bandgap Heterogeneity and Low Silicon-Doping

  • C.-H. Chen (a1), U. Gösele (a1) and T. Y. Tan (a1)

Abstract

Heavy n-doping enhanced disordering of GaAs based III-V semiconductor superlattice or quantum well layers, as well as the diffusion of Si in GaAs have been previously explained by the Fermi-level effect model with the triply-negatively-charged group III lattice vacancies identified to be the responsible point defect species. These vacancies have a thermal equilibrium concentration proportional to the cubic power of the electron concentration n, leading to the same dependence of the layer disordering rate. In this paper, in addition, we take into account also the electric field effect produced by the material bandgap heterogeneity and/or hetero-junctions. In heavily n-doped or long time annealing cases, this effect is negligible. At low n-doping levels and for short annealing times, the layer disordering rate can be enhanced or reduced by this effect. Available experimental results of low Si-doped and very short-time annealed samples have been satisfactorily fitted using the Fermi-level effect model.

Copyright

References

Hide All
1. Chang, L. L. and Koma, A., Appl. Phys. Lett. 29, 138 (1976).
2. Laidig, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Colman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).
3. Deppe, D. G. and Holonyak, N. Jr, J. Appl. Phys. 66, R93 (1988).
4. Tan, T. Y. and Gösele, U., Cri. Rev. Sol. Stat. Mater. Sci. 17, 47 (1991).
5. Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., and Harbison, J. P., Appl. Phys. Lett. 50, 1823 (1987).
6. Deppe, D. G., Holonyak, N. Jr, Hsieh, K. C., Gravrilovic, P., Stuitius, W., and Williams, J., Appl. Phys. Lett. 51, 581 (1987).
7. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).
8. Yu, S., Gösele, U., and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).
9. Yu, H.-M., Gösele, U., and Tan, T. Y., J. Appl. Phys. 73, 7207 (1993).
10. Tan, T. Y. and Gösele, U., Mater. Chem. Phys. 44, 45 (1995).
11. Jafri, Z. H. and Gillin, W. P., J. Appl. Phys. 81, 2179 (1997).
12. Tan, T. Y., You, H.-M., Yu, S., Gösele, U. M., Jager, W., Boeringer, D. W., Zypman, F., Tsu, R., and Lee, S.-T., J. Appl. Phys. 72, 5206 (1992).
13. Olmsted, B. L., Houde-Walter, S. N., and Viturro, R. E., in Advanced III-V Compound Semiconductor Growth, Processing and Devices, eds. Pearton, S. J., Sadana, D. K., and Zawada, J. M., Mater. Res. Soc. Proc. vol. 240 (Mater. Res. Soc, Pittsburgh, PA, 1992) p. 721.
14. Jüngling, W., Pichler, P., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Electron. Devices ED-32, 156 (1985).
15. You, H.-M., Gösele, U. M., and Tan, T. Y., J. Appl. Phys. 74, 2461 (1993).
16. Joncour, M. C, Charasse, M. N., and Burgeat, J., J. Appl. Phys. 58, 3373 (1985).
17. Gillin, W. P., Bradley, I. V., Gwilliam, R., and Homewood, K. P., J. Appl. Phys. 73, 7715 (1993).

Fermi-Level Effect on Group III Atom Interdiffusion in III-V Compounds: Bandgap Heterogeneity and Low Silicon-Doping

  • C.-H. Chen (a1), U. Gösele (a1) and T. Y. Tan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed