Skip to main content Accessibility help

FDTD Simulation of Light Propagation Inside a-Si:H Structures

  • Alessandro Fantoni (a1) and Pedro Pinho (a2)


We have developed a computer program based on the Finite Difference Time Domain (FDTD) algorithm able to simulate the propagation of electromagnetic waves with wavelengths in the range of the visible spectrum within a-Si:H p-i-n structures. Understanding of light transmission, reflection and propagation inside semiconductor structures is crucial for development of photovoltaic devices. Permitting 1D analysis of light propagation over time evolution, our software produces results in well agreement with experimental values of the absorption coefficient. It shows the light absorption process together with light reflection effects at the incident surface as well as at the semiconductor interfaces. While the effects of surface reflections are easily taken into account by the algorithm, light absorption represents a more critical point, because of its non-linear dependence from conductivity. Doping density, density of states and photoconductivity calculation are therefore crucial parameters for a correct description of the light absorption-transmission phenomena through a light propagation model.

The results presented in this paper demonstrate that is possible to describe the effect of the light-semiconductor interaction through the application of the FDTD model to a a-Si:H solar cell. A more general application of the model to 2D geometries will permit the analysis of the influence of surface and interface roughness on the device photovoltaic efficiency.



Hide All
1 Yee, K. S., IEEE Trans. Antennas Propagat. AP-14, 302, (1966).
2 Taflove, A. and Hagness, S. C., Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd ed (Artech House, Boston 2005).
3 Sullivan, D.M., Electromagnetic Simulation Using the FDTD Method. (IEEE Press, New York 2000).
4 Yu, W., Mittra, R., Su, T., Liu, Y., Yang, X.. Parallel Finite-Difference Time-Domain Method. (Artech House, 2006).
5 Lauer, A., Wolff, I., Bahr, A., Pamp, J., and Kunisch, J., in Proceedings of the 45th IEEE Vehicular Technology Conference (Chicago, USA, 1995), 454458
6 Rodriguez, G., Miyazaki, Y., Goto, N., IEEE Trans. Antennas Propagat. 54 (3), 785 (2006)
7 Bourgeois, J. M., Smith, G. S. IEEE Trans. Geosci. Remote Sensing. 34 (1), 36 (1996)
8 Oguz, U., Gurel, L., IEEE Trans. Geosci. Remote Sensing 40, 1385 (2002)
9 Sabouni, A., Noghanian, S., Pistorius, S., IEEE AP-S International Symposium, (New Mexico, USA, 2006).
10 El-Ghazaly, S. M., Joshi, R. P., Grondin, R. O., IEEE Trans. Microw. Theory Tech. 38 (5), 629 (1990).
11 Chang, S. H., Taflove, A., Opt. Express (12), 3827 (2004).
12 Pflaum, C., Haase, C., Stiebig, H., Jandl, C., 24th European Photovoltaic Solar Energy Conference, (Hamburg, Germany 2009) paper 3BO.9.6.
13 O'Brien, P., Kherani, N., Zukotynski, S., Ozin, G., Vekris, E., Tetreault, N., Chutinan, A., John, S., Mihi, A., and Míguez, H., Adv. Mater. 19, 4177 (2007).
14 Fantoni, A., Vieira, M., Martins, R.. Math. Comput. Simulat. 49, 381 (1999).
15 Luebbers, R. J., Hunsberger, F. P., Kunz, K. S., Standler, R. B., and Schneider, M., IEEE Trans. Electromag. Compat. 32 (3), 222 (1990).
16 Kelley, D. K. and Luebbers, R. J., IEEE Trans. Antennas Propag. 44 (6), 792 (1996)
17 Sullivan, D. M., IEEE Trans. Antennas Propag. 40 (10), 1223 (1992).
18 Joseph, R. M., Hagness, S. C., and Taflove, A., Optics Lett. 16, 1412 (1991).
19 Jellison, G.E. Jr, Modine, F.A., Appl.Phys.Lett. 69, 371 (1996).
20 Jellison, G.E. Jr, Modine, F.A., Appl. Phys. Lett. 69, 2137 (1996)
21 Ferlauto, A.S., Ferreira, G.M., Pearce, J.M., Wronski, C.R., Collins, R.W., Deng, X., Ganguly, G., Thin Solid Films 455–456, 388 (2004)


FDTD Simulation of Light Propagation Inside a-Si:H Structures

  • Alessandro Fantoni (a1) and Pedro Pinho (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed