Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T03:54:57.678Z Has data issue: false hasContentIssue false

F-Centers and Oxygen-Interstitials in MgO

Published online by Cambridge University Press:  25 February 2011

C. Scholz
Affiliation:
Inst, für Festkõrperforschung, Forschungszentrum Jülich Postfach 1913, D-5170 Jülich
P. Ehrhart
Affiliation:
Inst, für Festkõrperforschung, Forschungszentrum Jülich Postfach 1913, D-5170 Jülich
Get access

Abstract

MgO single crystals have been irradiated at different temperatures (4 K, 300 K) with electrons of energies varying between 0.3 and 3 MeV. The irradiation induced defects and their reactions during thermal annealing have been investigated by optical absorption spectroscopy and by X-ray diffraction. The relaxation volume (Viel ≈ 1 at.vol. = a3/8) and the migration energy of the interstitial atoms (≈ 1.6 eV) are determined and an ionization induced and thermally assisted migration process is observed for the first time. The relevance of these results for the understanding of the cascade damage observed after neutron- or ion-damage is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nowick, A. S., MRS-Bulletin (Nov. 1991) p. 38.Google Scholar
2. Stoller, R. E., J. Am. Ceram. Soc. 73, 2446 (1990).Google Scholar
3. Kinoshita, C., Hayashi, K. and Mitchell, T.E., Adv. in Ceramics 10, 490 (1983).Google Scholar
4. Sangster, M. J. L., and Rowell, D. K., Phil. Mag. A44, 613 (1981).Google Scholar
5. Chen, Y., Williams, R. T., and Sibley, W.A., Phys. Rev. 182, 960 (1969).Google Scholar
6. Henderson, B. and Bowen, D. H., J. Phys. C4, 1487 (1971).Google Scholar
7. Peisl, H., in Defects and their Structure in Non-Metallic Solids, edited by Henderson, B. and Hughes, A. E. (Plenum 1976) pp. 381.CrossRefGoogle Scholar
8. Hughes, A. E., J. de Phys. C9, 515 (1973).Google Scholar
9. Evans, B. D., Phys. Rev. B9, 5222 (1974).CrossRefGoogle Scholar
10. Ehrhart, P., MRS-Proc. Vol. 41, 13 (1985).CrossRefGoogle Scholar
11. Scholz, C., Diploma thesis, RWTH Aachen 1992 (unpublished).Google Scholar
12. M. Pütz, report KFA-Jülich, Jül-2360 (1990).Google Scholar
13. P. Ehrhart (this volume).Google Scholar
14. Chen, Y., Abraham, M. M., Templeton, L. C. and Unruh, W. P., Phys. Rev. B11, 881 (1975).CrossRefGoogle Scholar
15. Chen, Y. and Sibley, W. A., Phil. Mag. 20, 217 (1969).CrossRefGoogle Scholar
16. Chen, Y., Trueblood, D. L., Schow, O. E., and Tohver, H. T., J. Phys. C3, 2501 (1970).Google Scholar
17. Okada, M., Seiyama, T., Ichihara, C. and Nakagawa, M., J. Nucl. Mat. 133/134, 745 (1985).Google Scholar
18. Evans, B. D., Comas, J., and Malmberg, P. R., Phys. Rev. B6, 2453 (1972).Google Scholar
19. Pells, G. P., Rad. Eff. 64, 71 (1982).Google Scholar
20. Roberts, R. W., Crawford, H. J., J. Non-Met. 2, 133 (1974).Google Scholar
21. Krefft, G. B., J. Vac. Sci. Technol. 14, 533 (1977).CrossRefGoogle Scholar