Skip to main content Accessibility help
×
Home

Fatigue Study of a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass

  • G. Y. Wang (a1), P. K. Liaw (a1), A. Peker (a2), B. Yang (a1), M. L. Benson (a1), W. Yuan (a1), W. H. Peter (a1), L. Huang (a1), M. Freels (a1), R. A. Buchanan (a1), C. T. Liu (a3) and C. R. Brooks (a1)...

Abstract

High-cycle fatigue (HCF) studies were performed on zirconium (Zr)-based bulk metallic glasses (BMGs): Zr41.2Ti13.8Ni10Cu12.5Be22.5, in atomic percent. The HCF experiments were conducted using an electrohydraulic machine at a frequency of 10 Hz with a R ratio of 0.1 and under tension-tension loading, where R = σmin./σmax., where σmin. and σmax. are the applied minimum and maximum stresses, respectively. The test environment was air. A high-speed and high-sensitivity thermographic-infrared (IR) imaging system has been used for nondestructive evaluation of temperature evolution during fatigue testing of BMGs. Limited temperature evolution was observed during fatigue. However, no sparking phenomenon was observed at the final moment of fracture of this BMG. At high stress levels (σmax. > 864 MPa), the fatigue lives of Batch 59 are longer than those of Batch 94 due to the presence of oxides in Batch 94. Moreover, the fatigue-endurance limit of Batch 59 (703 MPa) is somewhat greater than that of Bath 94 (615 MPa) in air. The fatigue-endurance limit of Ti-6–4 is greater than this BMG, but Al 7075 has the lowest fatigue life. The vein pattern with a melted appearance were observed in the apparent melting region. The fracture morphology indicates that fatigue cracks initiate from some defects.

Copyright

References

Hide All
1. Klement, W., Willens, R. H., and Duwez, P.: Nature, 1960, vol. 187, pp. 869.
2. Nicholson, D. M. C., Stocks, G. M., Shelton, W. A., Wang, Y., and Swihart, J. C.: Metallurgical and Materials Transactions A, 1998, vol. 29A, pp. 1845.
3. Peter, W. H., Buchanan, R. A., Liu, C. T., Liaw, P. K., Morrison, M. L., Horton, J. A. Jr, Carmichael, C. A. Jr, and Wright, J. L.: Intermetallics, 2002, vol. 10, pp. 1157.
4. Flores, K. M., and Dauskardt, R. H.: Scripta Materialia, 1999, vol. 41, pp. 937
5. Peker, A. and Johnson, W. L.: Applied Physics Letters, 1993, vol. 63, pp. 2342.
6. Inoue, A., Zhang, T., and Masumoto, T.: Materials Transactions, JIM, 1990, vol. 31(5), pp. 177.
7. Zhang, T., Inoue, A., and Masumoto, T.: Materials Transactions, JIM, 1991, vol. 32, pp. 1005.
8. Gilbert, C. J., Lippmann, J. M., and Ritchie, R. O.: Scripta Materialia, 1998, vol. 38, pp. 537.
9. Gilbert, C. J., Schroeder, V., and Ritchie, R. O.: Metallurgical and Materials Transactions A, 1999, vol. 30A, pp. 1739.
10. Kim, Y. J., Busch, R., Johnson, W. L., Rulison, A. J., and Rhim, W. K.: Applied Physics Letters, 1994, vol. 65, pp. 2136.
11. Busch, R., Kim, Y. J., and Johnson, W. L.: Journal of Applied Physics, 1995, vol. 77, pp. 4039.
12. Masuhr, A., Busch, R., and Johnson, W. L.: Journal of Non-Crystalline Solids Part 2, 1999, vol. 252, pp. 566.
13. Masuhr, A., Waniuk, T. A., Busch, R., and Johnson, W. L.: Physical Review Letters, 1999, vol. 82, pp. 2290.
14. Schennach, R., Grady, T., Naugle, D. G., McWhinney, H., Hays, C. C., Johnson, W. L., and Cocke, D. L.: Journal of Vacuum Science & Technology A - Vacuum Surfaces And Films Part 1, 2001, vol. 19(4), pp. 1447.
15. Bruck, H. A., Christman, T., Rosakis, A. J., and Johnson, W. L.: Scripta Metallurgica et Materialia, 1994, vol. 30, pp. 429.
16. Bruck, H. A., Rosakis, A. J., and Johnson, W. L.: Journal of Materials Research, 1996, vol. 11, pp. 503.
17. Flores, K. M., Suh, D., and Dauskardt, R. H.: Journal of Materials Research, 2002, vol. 17, pp. 1153.
18. Davis, L.: Metallic Glasses, Metals Park, OH: American Society for Metals, 1978, pp. 190.
19. Peter, W. H., Liaw, P. K., Buchanan, R. A., Liu, C. T., Brooks, C. R., Horton, J. A. Jr, Carmichael, C. A. Jr, and Wright, J. L.: Intermetallics, 2002, vol. 10, pp. 1125.
20. Peter, W. H., Buchanan, R. A., Liu, C. T., and Liaw, P. K., Journal of Non-Crystalline Solids, 2003, vol. 317, pp. 187.
21. Yang, B., Liaw, P. K., Wang, H., Jiang, L., Huang, J. Y., Kuo, R. C., and Huang, J. G.: Materials Science and Engineering, 2001, vol. A314, pp. 131.
22. Jiang, L., Wang, H., Liaw, P. K., Brooks, C. R., and Klarstrom, D. L.: Metallurgical and Materials Transaction A, 2001, vol. 32(9), pp. 2279.
23. Wang, H., Jiang, L., Liaw, P. K., Brooks, C. R., and Klasstrom, D. L.: Mettallurgical and Materials Transaction A, 2000, vol. 31, pp. 1307.
24. Jiang, L., Wang, H., Liaw, P. K., Brooks, C. R., and Klarstrom, D. L.: Transaction of Nonferrous Metals Society of China, 2002, vol. 12, pp. 734.
25. Wang, H., Jiang, L., He, Y., Chen, L., Liaw, P., Seeley, R., and Klarstrom, D.: Metallurgical Transactions A, 2002, vol. 33, pp. 1287.
26. Liaw, P. K., Yang, B., Tian, H., Jiang, L., Wang, H., Huang, J. Y., Kuo, R. C., Huang, J. G., Fielden, D., Strizak, J. P., and Mansur, L. K.: Fatigue and Fracture Mechanics: 33rd Volume, ASTM STP 1417, Reuter, W. G. and Piascik, R. S., Eds., ASTM International, West Conshohocken, PA, 2002, pp. 524.
27. Liaw, P. K., Wang, H., Jiang, L., Yang, B., Huang, J. Y., Kuo, R. C., and Huang, J. G.: Scripta Materialia, 2000, vol. 42, pp. 389.
28. Yang, B., Liaw, P. K., Wang, G., Peter, W. H., Buchanan, R. A., Yokoyama, Y., Huang, J. Y., Kuo, R. C., Huang, J. G., Fielden, D. E., and Klarstrom, D. L.: Thermal-Imaging Technologies for Detecting Mechanical Damage during High-Cycle Fatigue, Metallurgical and Materials Transaction A, in press.
29. Yang, B.: Journal of Materials Engineering and Performance, 2003, vol. 12(3), pp. 345.
30. Chen, L. J., Liaw, P. K., Wang, H., He, Y. H., McDaniels, R. L., Jiang, L., Yang, B., and Klarstrom, D. L.: Mechanics of Materials, 2004, vol. 36, pp. 85.
31. Jiang, L., Wang, H., Liaw, P. K., Brooks, C. R., Chen, L., and Klarstrom, D. L.: Metallurgical and Materials Transactions A., in press.
32. Jiang, L., Wang, H., Liaw, C. R., Brooks, C. R., and Klarstrom, D. L., Mechanics of Materials, 2004, vol. 36. pp. 73.
33. Hertzberg, R.: Deformation and Fracture Mechanics of Engineering Materials. 3rd Ed., John Wiley & Sons, 1989.
34. ASME Handbook, Metals Engineering – Design, New York, McGraw-Hill, 1953.
35. Wang, G. Y., Liaw, P. K., Peter, W. H., Yang, B., Yokoyama, Y., Benson, M. L., Green, B. A., Kirkham, M. J., White, S. A., Saleh, T. A., McDaniels, R. L., Steward, R. V., Buchanan, R. A., Liu, C. T., and Brooks, C. R.: Fatigue Behavior of Bulk Metallic Glasses, Journal of Intermetallics, in press.
36. Nisitani, H. and Chen, D. H.: Transactions of the Japan Society of Mechanical Engineers, 1984, vol. 50, no. 453, pp. 1077.
37. Liu, C. T., Heatherly, L., Easton, D. S., Carmichael, C. A., Schneibel, J. H., Chen, C. H., Wright, J. L., Yoo, M. H., Horton, J. A., and Inoue, A.: Metallurgical and Materials Transactions A, 1998, vol. 29A, pp. 1811.
38. Donovan, P. E. and Stobbs, W. M.: Acta Metallurgica, 1981, vol. 29, pp. 1419.
39. Steif, P. S., Spaepen, F., and Hutchinson, J. W.: Acta Metallurgica, 1982, vol. 30, pp. 447.
40. Leng, Y. and Courtney, T. H.: Journal of Materials Science, 1991, vol. 26, pp. 588.

Fatigue Study of a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass

  • G. Y. Wang (a1), P. K. Liaw (a1), A. Peker (a2), B. Yang (a1), M. L. Benson (a1), W. Yuan (a1), W. H. Peter (a1), L. Huang (a1), M. Freels (a1), R. A. Buchanan (a1), C. T. Liu (a3) and C. R. Brooks (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed