Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T23:58:53.467Z Has data issue: false hasContentIssue false

Fast Lateral Epitaxial Overgrowth of Gallium Nitride by Metalorganic Chemical Vapor Deposition Using A Two-Step Process

Published online by Cambridge University Press:  15 February 2011

H. Marchand
Affiliation:
ECE Dept., University of California, Santa Barbara, CA 93106
J.P. Ibbetson
Affiliation:
ECE Dept., University of California, Santa Barbara, CA 93106
P.T. Fini
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
X.H. Wu
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
S. Keller
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
S.P. DenBaars
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
J.S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106
U.K. Mishra
Affiliation:
ECE Dept., University of California, Santa Barbara, CA 93106
Get access

Abstract

We demonstrate a two-step process wherein the lateral epitaxial growth (LEO) of GaN from <1010>-oriented stripes is initiated at a low V/II1 ratio to produce smooth, vertical {1120} sidewalls, and where the V/III ratio is subsequently raised in order to increase the lateral growth rate. We find that the formation of the {1101} facets is inhibited using this two-step process, and that it is possible to maintain the {1120} sidewalls while achieving a large lateral growth rate. The ratio of lateral to vertical growth rate has been increased by up to factor of 2.6 using this approach relative to identical growth conditions without the initiation at low V/III ratio. The effect of lateral growth rate on the structural properties of the stripes is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zheleva, T.S., Nam, O.-H., Bremser, M.D., and Davis, R.F., Appl. Phys. Lett. 71, 2472 (1997).Google Scholar
2. Sakai, A., Sunakawa, H., and Usui, A., Appl. Phys. Lett. 71, 2259 (1997).Google Scholar
3. Marchand, H., Ibbetson, J.P., Fini, P.T., Kozodoy, P., Keller, S., Speck, J.S., DenBaars, S.P., and Mishra, U.K., MRS Internet J. Nitride Semicond. Res. 3, 3 (1998).Google Scholar
4. Marchand, H., Wu, X.-H., Ibbetson, J.P., Fini, P.T., Kozodoy, P., Keller, S., Speck, J.S., DenBaars, S.P., and Mishra, U.K., Appl. Phys. Lett. 73, 747 (1998).Google Scholar
5. Marchand, H., Zhang, N, Zhao, L., Golan, Y, Fini, P T, Ibbetson, I P, Keller, S., DenBaars, S P, Speck, J S, and Mishra, U K, 25th Int. Symp. on Compound Semicond., Nara, Japan, 12-16 Oct. 1998.Google Scholar
6. Nam, O.-H., Bremser, M.D., Zheleva, T.S., and Davis, R.F., Appl. Phys. Lett. 71, 2638 (1997).Google Scholar
7. Sakai, A., Sunakawa, U., and Usui, A., Appl. Phys. Lett. 73, 481 (1998); A. Usui, H. Sunakawa, N. Kurado, A. Kimura, A. Sakai, and A.A. Yamaguchi, 2nd Int. Conf. on Blue Laser and Light Emitting Diodes, Chiba, Japan, Sept. 29- Oct. 2, 1998.Google Scholar
8. Freitas, J.A. Jr, Nam, O.-H., Davis, R.F., Saparin, G.V., and Obyden, S.K., Appl. Phys. Lett. 72, 2990 (1998).Google Scholar
9 Chichibu, S., Marchand, H., Keller, S., Fini, P., Ibbetson, J.P., Minsky, M., Fleischer, S., Speck, J.S., Bowers, J., Hu, E., Mishra, U.K., DenBaars, S.P., Deguchi, T., Sota, T., and Nakamura, S., 2nd Int. Conf. on Blue Laser and Light Emitting Diodes, Chiba, Japan, Sept. 29 - Oct. 2, 1998.Google Scholar
10. Li, X., Bishop, S.G., and Coleman, J.J, Appl. Phys. Lett. 73, 1179 (1998).Google Scholar
11. Nakamura, S., Senoh, M., Nagahama, S., Isawa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, M., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
12. Kozodoy, P., lbbetson, J.P., Marchand, H., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S., Mishra, U.K., Appl. Phys. Lett. 73 975 (1998).Google Scholar
13. Mukai, T., Takekawa, K., Nakamura, S., Jpn. J. Appl. Phys. 37 L839 (1998).Google Scholar
14. Sasaoka, C., Sumakawa, H., Kimura, A., Nido, M., Usui, A., and Sakai, A., J. Cryst. Growth 189, 61 (1998).Google Scholar
15. Vetury, R., Marchand, H., Ibbetson, J.P., Fini, P.T., Keller, S., Speck, J.S., Denbaars, S.P., and Mishra, U.K., 25th Int. Symp. on Compound Semicond., Nara, Japan, Oct 12-16, 1998 Google Scholar
16. Kapolnek, D., Keller, S., Vetury, R., Underwood, R.D., Kozodoy, P., DenBaars, S.P., and Mishra, U.K., Appl. Phys. Lett. 71 (1997) 1204.Google Scholar
17. Kato, Y., Kitamura, S., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 144, 133 (1994).Google Scholar
18. Marchand, H., Ibbetson, J.P., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S., and Mishra, U.K., J. Cryst. Growth (in press).Google Scholar
19.The fill factor (FF) is defined as the ratio of the stripe opening width to the pattern period, such that an infinitely wide mask corresponds to FF=0 and a planar GaN film corresponds to FF=l.Google Scholar
20. Ibbetson, J.P., Marchand, H., Fini, P.T., Wu, X.H., Keller, S., DenBaars, S.P., Speck, J.S., and Mishra, U.K., 40th Electronic Materials Conference, Charlottesville, VA, 24-26 June 1998; H. Marchand, J.P. Ibbetson, P.T. Fini, S. Chichibu, S.J. Rosner, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, 25th Int. Symp. on Compound Semicond., Nara, Japan, Oct 12-16, 1998.Google Scholar
21. Keller, B.P., Keller, S., Kapolnek, D., Jiang, W.N., Wu, Y.-F., Masui, H., Wu, X.H., Heying, B., Speck, J.S., Mishra, U.K., and DenBaars, S.P., J. Electr. Mater. 24 (1992) 1707.Google Scholar
22.Selective-area PL measurements on LEO GaN and InGaN are reported in Ref. 9.Google Scholar
23. Fini, P.T., unpublished results.Google Scholar