Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:55:51.982Z Has data issue: false hasContentIssue false

Fast growth of amorphous silicon layers by amplitude modulation PECVD

Published online by Cambridge University Press:  17 March 2011

A. C. W. Biebericher
Affiliation:
Debye Institute, Interface Physics, Utrecht University, P.O. Box 80 000, NL-3508 TA Utrecht, the Netherlands
J. Bezemer
Affiliation:
Debye Institute, Interface Physics, Utrecht University, P.O. Box 80 000, NL-3508 TA Utrecht, the Netherlands
W. F. van der Weg
Affiliation:
Debye Institute, Interface Physics, Utrecht University, P.O. Box 80 000, NL-3508 TA Utrecht, the Netherlands
W. J. Goedheer
Affiliation:
FOM Institute for Plasmaphysics ‘Rijnhuizen’, P.O. Box 1207, NL-3430 BE Nieuwegein, the Netherlands
Get access

Abstract

Hydrogenated amorphous silicon has been deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) with a square wave amplitude modulated rf signal of 50 MHz. We studied the dependence of the deposition rate on the modulation frequency, using optical emission spectroscopy and plasma modeling. We observed an enhancement in deposition rate by modulating the plasma. This behavior is explained by the characteristics of the electronenergy distribution during the periodical onset of the plasma. According to a one-dimensional fluid model, high-energy electrons cause a large production of radicals at the onset. The heating occurs over the whole plasma volume, leading to an increase of the homogeneity of the layers. The discharge structure is changed completely. A comparison is made between results obtained at 13.56 MHz and at 50 MHz deposition voltages.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Perrin, J., Cabarrocas, P. Roca i, Allain, B., and Friedt, J.-M., Jpn. J. Appl. Phys. 27, 2041 (1988).Google Scholar
2. Anandan, C., Mukherjee, C., Seth, T., Dixit, P. N., and Bhattacharyya, R., Appl. Phys. Lett. 66, 85 (1995).Google Scholar
3. , Mukherjee, Anandan, C., Seth, T., Dixit, P. N., and Bhattacharyya, R., Appl. Phys. Lett. 68, 194 (1996).Google Scholar
4. Kirimura, H., Maeda, H., Murakami, H., Nakahigashi, T., Ohtani, S., Tabata, T., Hayashi, T., Kobayashi, M., Mitsuda, Y., Nakamura, N., Kuwahara, H., and Doi, A., Jpn. J. Appl. Phys. 33, 4389 (1994).Google Scholar
5. Morrison, S., Xi, J., and Madan, A., Mat. Res. Soc. Symp. Proc. 507, 559 (1998)Google Scholar
6. Scarsbrook, G., Llewellyn, I. P., Ojha, S. M., and Heinecke, R. A., Vacuum 38, 627 (1988).Google Scholar
7. , Howling, Sansonnens, L., Dorier, J. L., and Hollenstein, C., J. Appl. Phys. 75, 1340 (1994).Google Scholar
8. Overzet, L. J. and Verdeyen, J. T., Appl. Phys. Lett. 48, 695 (1986).Google Scholar
9. Booth, J. P., Cunge, G., Sadeghi, N., and Boswell, R. W., J. Appl. Phys. 82, 552 (1997).Google Scholar
10. Nienhuis, G. J., Goedheer, W. J., Hamers, E. G. A., Sark, W. G. J. H. M. van, and Bezemer, J., J. Appl. Phys. 82, 2060 (1997).Google Scholar
11. Meiling, H., Ph.D. thesis, Utrecht University, 1991.Google Scholar
12. Biebericher, A. C. W, Bezemer, J., Weg, W. F. van der, and Goedheer, W. J., Appl. Phys. Lett. 76 (15), 2002 (2000).Google Scholar