Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T16:03:03.318Z Has data issue: false hasContentIssue false

Fast Diffusion of Iron in Single Crystal Rutile and Iron Doped Rutile

Published online by Cambridge University Press:  21 February 2011

J. Sasaki
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
N. L. Peterson
Affiliation:
Argonne National Laboratory, 9700 South Cass Av., Argonne, IL 60439
L. C. De Jonghe
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

Tracer diffusion coefficients of Fe, DFe* in single crystals of rutile and of 0 –2.0% Fe doped rutile were measured. The oxygen pressure dependence of DFe* in pure rutile showed complicated behavior. The values of DFe* may consist of contributions from Fe2+ ions diffusing by an interstitial mechanism and from Fe3+ ions diffusing by an interstitialcy mechanism in cooperation with tetravalent titanium interstitial ions, Tii. The value of DFe* in Fe doped rutile attains a saturation value when the Fe content reaches about 0.1%, D*Fe decreases drastically when the Fe content exceeds about 0.35%. Complex impedance measurements of electrical conductivity indicate the existence of ionic conduction for Fe doped rutile containing less than 0.35% of Fe. The small ionic conductivity relative to the values of D*Fe suggests that only a small fraction of the iron ions are highly mobile. Above 0.35% Fe, the observed drastic decrease in D*Fe may result from the formation of a shear structure In highly doped rutile.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sasaki, J. and Peterson, N. L., to be published.Google Scholar
2. Johnson, O. W., Phys. Rev. 136, A284 (1964).Google Scholar
3. Kasper, J. S. and Browall, K. W., J. Solid State Chem. 13, 49 (1975).Google Scholar
4. Okazaki, H., J. Phys. Soc. Jpn. 23, 355 (1967).Google Scholar
5. Kim, K. K., Mundy, J. N. and Chen, W. K., J. Phys. Chem. Solids 40, 743 (1979).CrossRefGoogle Scholar
6. Johnson, O. W., Paek, S.-H., and Deford, J. W., J. Appl. Phys. 46, 1026 (1975).Google Scholar
7. Pal'gnev, S. F., Gil'derman, V. K., and Neuimin, A. D., J. Electrochem. Soc. 122, 745 (1975).Google Scholar
8. Wittke, J. P., J. Am. Cer. Soc. 50, 586 (1967).Google Scholar
9. Carter, D. L. and Okaya, A., Phys. Rev. 118, 1485 (1960).CrossRefGoogle Scholar
10. Sabisky, E. S., cited in Wittke, J. P., J. Electrochem. Soc. 113, 193 (1966).Google Scholar
11. Marucco, J.-F., Gantron, J., and Lemasson, P., J. Phys. Chem. Solids 42, 363 (1981).Google Scholar
12. Kofstad, P. in: Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (J. Wiley-Interscience, NewYork 1972) pp. 146147.Google Scholar
13. Akse, J. R. and Whitehurst, H. B., J. Phys. Chem. Solids 39, 457 (1978).Google Scholar
14. Bursill, L. A., Netherway, D. J., and Grey, I. E., Nature (London) 272, 405 (1978).Google Scholar
15. Bursill, L. A., Grey, I. E., and Lloyd, D. J., J. Solid State Chem. 16, 331 (1976).Google Scholar
16. Rudolph, V. J., Z. Naturforschg. 140, 727 (1959).Google Scholar