Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-25T11:48:08.737Z Has data issue: false hasContentIssue false

Factors Controlling Transport Properties of Interfaces in High-Tc Superconductors

Published online by Cambridge University Press:  10 February 2011

H. Hilgenkamp
Affiliation:
Exp. Phys. VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-861 35 Augsburg, Germany.
R. R. Schulz
Affiliation:
Exp. Phys. VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-861 35 Augsburg, Germany.
C. W. Schneider
Affiliation:
Exp. Phys. VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-861 35 Augsburg, Germany.
B. Goetz
Affiliation:
Exp. Phys. VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-861 35 Augsburg, Germany.
A. Schmehl
Affiliation:
Exp. Phys. VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-861 35 Augsburg, Germany.
H. Bielefeldt
Affiliation:
Exp. Phys. VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-861 35 Augsburg, Germany.
J. Mannhart
Affiliation:
Exp. Phys. VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-861 35 Augsburg, Germany.
Get access

Abstract

A comprehensive understanding of the transport properties of interfaces in high-Tc cuprates been obtained by considering their microstructure, the possibility of bending of the electronic band structure in these materials, and the predominant dx2-y2 -symmetry of the order parameter in most high-Tc cuprates. These factors are of central importance for the critical current density and the normal state resistivity of grain boundaries and their dependencies on boundary misorientation and on applied magnetic and electrical fields. In addition, some of these factors play an important role for the transport properties of other interfaces involving high-Tc superconductors, such as superconductors-normal metal contacts.

Based on the improved understanding of the mechanisms controlling interface transport properties, we have been able to meet a long-standing challenge in high-Tc superconductivity and have increased the critical current densities of grain boundaries by large factors, using appropriate doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. De Gennes, P.G., Superconductivity of Metals and Alloys, Benjamin, New York (1966).Google Scholar
2. Deutscher, G. and Mifller, K.A., Phys. Rev. Lett. 59, 1745 (1987).10.1103/PhysRevLett.59.1745Google Scholar
3. Hilgenkamp, H., Mannhart, J., and Mayer, B., Phys. Rev. B 53, 14586(1996).10.1103/PhysRevB.53.14586Google Scholar
4. Mannhart, J. and Hilgenkamp, H., Supercond. Science and Technol. 10 880 (1997).10.1088/0953-2048/10/12/004Google Scholar
5. Mannhart, J. and Hilgenkamp, H., Mater. Sci and Eng. B 56, 77 (1998).10.1016/S0921-5107(98)00217-7Google Scholar
6. Hilgenkamp, H. and Mannhart, J., Appl. Phys. Lett. 73, 265 (1998).10.1063/1.121775Google Scholar
7. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K., Phys. Rev. Lett. 61 219 (1988).10.1103/PhysRevLett.61.219Google Scholar
8. Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).10.1103/PhysRevB.41.4038Google Scholar
9. Ivanov, Z.G., Nilsson, P.A., Winkler, D., Alarco, J.A., Claeson, T., Stepantsov, E.A., and Ya, A.. Tzalenchuk, Appl. Phys. Lett. 59, 3030 (1991).10.1063/1.105783Google Scholar
10. Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C.C., and McGuire, T.R., Phys. Rev. Lett. 61 2476 (1988).10.1103/PhysRevLett.61.2476Google Scholar
11. Ekin, J.W., Russek, S.E., Clickner, C.C., and Jeannerat, B., Appl. Phys. Lett. 62 369 (1993).10.1063/1.108959Google Scholar
12. Char, K., Antognazza, L., and Geballe, T.H., Appl. Phys. Lett. 63, 2420 (1993).10.1063/1.110494Google Scholar
13. Chisholm, M.F. and Smith, D.A., Phil. Mag. 59 181 (1989).10.1080/01418618908205053Google Scholar
14. Gao, Y., Merkle, K.L., Bai, G.-, Chang, H.L.M., and Lam, D.J., Phys. C 174, 1 (1991).10.1016/0921-4534(91)90413-SGoogle Scholar
15. Browning, N.D., Chisholm, M.F., Pennycook, S.J., Norton, N.P., and Lowndes, D.H., Phys. C 212, 185 (1993).10.1016/0921-4534(93)90501-GGoogle Scholar
16. Chisholm, M.F. and Pennycook, S.J., Nature 351, 47 (1991).10.1038/351047a0Google Scholar
17. Sarnelli, E., Chaudhari, P., and Lacey, J., Appl. Phys. Lett. 62, 777 (1993).10.1063/1.108576Google Scholar
18. Heinig, N.F., Redwing, R.D., Tsu, I. Fei, Gurevich, A., Nordman, J.E., Babcock, S.E., and Larbalestier, D.C., Appl. Phys. Lett. 69 577 (1996).10.1063/1.117758Google Scholar
19. Field, M.B., Larbalestier, D.C., Parikh, A., and Salama, K., Phys. C 216, 401 (1993).Google Scholar
20. Browning, N.D., Nellist, P.D., Norton, D.P., Chisholm, M.F., and Pennycook, S.J., Phys. C 294, 183 (1998).10.1016/S0921-4534(97)01689-4Google Scholar
21. Chaudhari, P., Dimos, D., and Mannhart, J., in ‘Earlier and Recent Aspects of Superconductivity”, J.G., Bednorz, K.A., Mifller, eds. Springer, Berlin (1990), 201.10.1007/978-3-642-84377-8_9Google Scholar
22. Jagannadham, K. and Narayan, J., Mater. Sci. Eng. B 14, 214 (1992).10.1016/0921-5107(92)90120-XGoogle Scholar
23. Meilikhov, E.Z., Phys. C 226, 69 (1994).10.1016/0921-4534(94)90479-0Google Scholar
24. Mironova, M.K., Stolbov, S.V., Du, G.P., and Salama, K., lEE Trans. App. Supercond. (in press).Google Scholar
25. J Halbritter, Phys. Rev. B 46, 14861(1992).10.1103/PhysRevB.46.14861Google Scholar
26. Halbritter, J., Phys. Rev. B 48, 9735 (1993).10.1103/PhysRevB.48.9735Google Scholar
27. Babcock, S.E., Cai, X.Y., Larbalestier, D.C., Shin, D.H., Zhang, N., Zhang, H., Kaiser, D.L., and Gao, Y., Phys. C 227, 183 (1994).10.1016/0921-4534(94)90372-7Google Scholar
28. Wang, Z.L., Brynestad, J., Kroeger, D.M., Sun, Y.R., Thompson, J.R., and Williams, R.K., Phys. Rev. B 48, 9726 (1993).10.1103/PhysRevB.48.9726Google Scholar
29. Chan, S.-W., J. Phys. Chem. Solids 55, 1415 (1994).10.1016/0022-3697(94)90568-1Google Scholar
30. Gross, R. and Mayer, B., Physica C 180, 235 (1991).10.1016/0921-4534(91)90673-MGoogle Scholar
31. Gross, R., in ‘Interfaces in High-Th Superconducting Systems’, Shindé, S.L. Rudman, D.A. eds. (Springer, New York 1994), 176.10.1007/978-1-4612-2584-3_6Google Scholar
32. Scalapino, D., Phys. Rep. 250 329 (1995).Google Scholar
33. Annett, J., Goldenfeld, N., and Leggett, T., in ‘Physical properties of high temperature superconductors’ 5, Ginsberg, D. M. (ed.), World Scientific, Singapore, 375 (1996).Google Scholar
34. Hilgenkamp, H. and Mannhart, J., Appl. Phys. A 64, 553 (1997).10.1007/s003390050515Google Scholar
35. Hess, H.F., Robinson, R.B., and Waszczak, J.V., Phys. B 169, 422 (1991).10.1016/0921-4526(91)90262-DGoogle Scholar
36. Hu, C.R., Phys. Rev. Lett. 72, 1526 (1994).10.1103/PhysRevLett.72.1526Google Scholar
37. Lesueur, J., Greene, L.H., Feldmann, W.L., and Inam, A., Phys. C 191 325 (1992).10.1016/0921-4534(92)90926-4Google Scholar
38. Alff, L., Takashima, H., Kashiwaya, S., Terada, N., Igara, H., Tanaka, Y., Koyanagi, M.. and Kajimura, K., Phys. Rev. B 55, R14757 (1997).10.1103/PhysRevB.55.R14757Google Scholar
39. Tanaka, Y. and Kashiwaya, S., Phys. Rev. Lett. 74, 3451 (1995); Phys. Rev. B 53, R1 1957 (1996).10.1103/PhysRevLett.74.3451Google Scholar
40. Yu. Barash, S., Burkhardt, H., and Rainer, D., Phys. Rev. Lett. 77, 4070 (1996).10.1103/PhysRevLett.77.4070Google Scholar
41. Sigrist, M. and Rice, M., Rev. Mod. Phys. 67, 503 (1995).10.1103/RevModPhys.67.503Google Scholar
42. Wollman, D.A., van Harlingen, D.J., Lee, W.C., Ginsberg, D.M., and Leggett, A.J., Phys. Rev. Lett. 71, 2134 (1993).10.1103/PhysRevLett.71.2134Google Scholar
43. Van Harlingen, D.J., Rev. Mod. Phys. 67, 515 (1995).10.1103/RevModPhys.67.515Google Scholar
44. Tsuei, C.C., Kirtley, J.R., Chi, C.C., Jahnes, L.S. Yu-, Gupta, A., Saw, T., Sun, J.Z., and Ketchen, M.B., Phys. Rev. Lett. 73, 593 (1994).10.1103/PhysRevLett.73.593Google Scholar
45. Kirtley, J.R., Tsuei, C.C., Sun, J.Z., Chi, C.C., Yu-Jahnes, L.S., Gupta, A., Rupp, M., and Ketchen, M.B., Nature 373, 225 (1995).10.1038/373225a0Google Scholar
46. Mannhart, J., Mayer, B., and Hilgenkamp, H., Z. Phys. B 101, 175 (1996).10.1007/s002570050197Google Scholar
47. Mannhart, J., Hilgenkamp, H., Mayer, B., Gerber, Ch., Kirtley, J.R., Moler, K.A., and Sigrist, M., Phys. Rev. Lett. 77, 2782 (1996).10.1103/PhysRevLett.77.2782Google Scholar
48. Copetti, C.A., Rtiders, F., Oelze, B., Buchal, Ch., Kabius, B., and Seo, J.W., Phys. C 253, 63 (1995).10.1016/0921-4534(95)00489-0Google Scholar
49. Humphreys, R.G., Satchell, J.S., Goodyear, S.W., Chew, N.G., Keene, M.N., Edwards, J.A., Barret, C.P., Exon, N.J., and Lander, K., in ‘Proceedings of 2nd Workshop on HTS Applications and New Materials’, edited by Blank, D.H.A., Enschede, , 16 (1995).Google Scholar
50. Il'ichev, E., Zakosarenko, V., Ijsselsteijn, R.P.J., Schultze, V., Meyer, H.-G., Hoenig, H.E., Hilgenkamp, H., and Mannhart, J., Phys. Rev. Lett. 81, 894 (1998).10.1103/PhysRevLett.81.894Google Scholar
51. Hilgenkamp, H., Mannhart, J., Mayer, B., Gerber, Ch., Kirtley, J.R., and Moler, K.A., IEEE Trans. Appl. Supercond. 7, 3670 (1997).10.1109/77.622214Google Scholar
52. Babcock, S.E. and Vargas, J.L., Annu. Rev. Mater. Sci. 25, 193 (1993).10.1146/annurev.ms.25.080195.001205Google Scholar
53. Winkler, D., Zhang, Y.M., Nilsson, P.A., Stepantsov, E.A., and Claeson, T., Phys. Rev. Lett. 72. 1260 (1994).10.1103/PhysRevLett.72.1260Google Scholar
54. Taylor, W.E., Odell, N.H., and Fan, H.Y., Phys. Rev. 88, 867 (1952).10.1103/PhysRev.88.867Google Scholar
55. Werner, J., in ‘Polycrystalline semiconductors’, Springer Series in Solid-State Sciences 57, Harbeke, G. ed., Springer (1985).Google Scholar
56. Vollmann, M., Hagenbeck, R., and Waser, R., J. Am. Ceram. Soc. 80, 2301 (1997).10.1111/j.1151-2916.1997.tb03121.xGoogle Scholar
57. Greuter, F. and Blatter, G., Semicond. Sci. Technol. 5, 111 (1990).10.1088/0268-1242/5/2/001Google Scholar
58. Mannhart, J., Mod. Phys. Lett. B 6, 555 (1992).10.1142/S0217984992000648Google Scholar
59. Mannhart, J., Supercond. Sci. Technol. 9, 49 (1996).10.1088/0953-2048/9/2/001Google Scholar
60. Ariosa, D. and Beck, H., Phys. Rev. B 43, 344 (1991).10.1103/PhysRevB.43.344Google Scholar
61. Bok, J., Force, L., and Bernstein, P., Phys. C 185–189, 2067 (1991).10.1016/0921-4534(91)91158-ZGoogle Scholar
62. Mannhart, J., Kleinsasser, A., Ströbel, J., and Baratoff, A., Phys. C 216, 401 (1993).10.1016/0921-4534(93)90083-3Google Scholar
63. Blatter, G., Feigel'man, M., Geshkenbein, V., Larkin, A., and Otterlo, A. van, Phys. Rev. Lett. 77 566 (1996).10.1103/PhysRevLett.77.566Google Scholar
64. Emig, T., Samokhin, K., and Scheidl, S., Phys. Rev. B 56, 8386 (1997).10.1103/PhysRevB.56.8386Google Scholar
65. Gurevich, A. and Pashitkii, E.A., Phys. Rev. B 57, 13878(1998).10.1103/PhysRevB.57.13878Google Scholar
66. Hilgenkamp, H. and Mannhart, J., Proc. 4th Twente HTS Workshop, in press (1998).Google Scholar
67. Tarte, E.J., Wagner, G.A., Somekh, R.E., Baudenbacher, F.J., Berghuis, P., and Evetts, J.E., IEEE Trans. Appl. Supercond. 7, 3662 (1997).10.1109/77.622212Google Scholar
68. Schmehl, A., Goetz, B., Schulz, R.R., Schneider, C.W., Bielefeldt, H., Hilgenkamp, H., and Mannhart, J., subm. to Europhys. Lett..Google Scholar
69. Schneider, C.W., Schulz, R.R., Goetz, B., Schmehl, A., Bielefeldt, H., Hilgenkamp, H., and Mannhart, J., subm. to Appl. Phys. Lett..Google Scholar
70. Chaudhari, P., Dimos, D., Mannhart, J. and Tsuei, C.C., unpublished (1988).Google Scholar
71. Russek, S.E., Lathrop, D.K., Moeckly, B.H., Buhrman, R.A., Shin, D.H., and Silcox, J., Appl. Phys. Lett. 57, 1155 (1990).10.1063/1.104223Google Scholar
72. Kawasaki, M., Chaudhari, P., and Gupta, A., Phys. Rev. Lett. 68, 1065 (1992).10.1103/PhysRevLett.68.1065Google Scholar
73. Ivanov, Z.G., Nilsson, P.A., Winkler, D., Alarco, J.A., Claeson, T., Stepantsov, E.A., and Tzalenchuk, A. Ya., Appl. Phys. Lett. 59, 3030 (1991).10.1063/1.105783Google Scholar
74. Dong, Z.W., Matijasevic, V.C., Hadley, P., Shao, S.M., and Mooij, J.E., IEEE Trans. Appl. Supercond. 5, 2879 (1995).10.1109/77.403193Google Scholar
75. Odagawa, A. and Enomoto, Y., Phys. C 252, 141 (1995).10.1016/0921-4534(95)00433-5Google Scholar
76. Sung, G.Y., Suh, J.D., and Lee, S.-G., Phys. C 282, 2475 (1997).10.1016/S0921-4534(97)01322-1Google Scholar
77. Kucera, J.T. and Bravman, J.C., Phys. Rev. B 51, 8582 (1995).10.1103/PhysRevB.51.8582Google Scholar
78. Manthiram, A., Lee, S.J., and Goodenough, J.B., J. Solid State Chem. 73, 278 (1988).10.1016/0022-4596(88)90080-1Google Scholar
79. Sung, G.Y., Suh, Jeong Dae, Kang, Kwang Yong, Hwang, Jun-Sik, Yoon, Soon-Gil, Lee, Moon Chul, and Lee, Soon Gul, IEEE Trans. Appl,. Supercond. (in press).Google Scholar
80. Barone, A. and Paternò, G., ‘Physics and Applications of the Josephson Effect’ (Wiley and Sons, New York, 1982).10.1002/352760278XGoogle Scholar
81. Ginzburg, V.L. and Landau, L.D., Zh. Eksp. Theor. Fiz. 20, 1064 (1950).Google Scholar
82. Ambegaokar, V. and Baratoff, A., Phys. Rev. Lett. 10, 486 (1963); 11 104 (1964) (Erratum).10.1103/PhysRevLett.10.486Google Scholar