Skip to main content Accessibility help

Facet Evolution and Selective Growth of GaAs/AlGaAs Lateral Structure Grown by Growth–Interrupted Chemical Beam Epitaxy Using Unprecracked Monoethylarsine

  • Jeong-Rae Ro (a1), Sung-Bock Kim (a1), Seong-Ju Park (a2), Jihwa Lee (a3) and El-Hang Lee (a1)...


Facet evolution and selective area epitaxy of GaAs/AIGaAs ridge and V-groove structure grown on non-planar GaAs(100) substrate by chemical beam epitaxy(CBE) have been investigated for nanostructure applications. To enhance the crystallographic selectivity and to study the new facet evolution on patterned substrate, GaAs and AlGaAs epilayer were grown by growth-interruption mode and continuous mode, respectively. High selectivity of GaAs layer was observed to depend on the various crystallographic planes even at low growth temperature. This was attributed to the efficient Ga surface migration and desorption during the growth-interruption periods. The growth-interruption method was found to be very efficient in improving the morphology of faceted surfaces. We demonstrated that the formation of (111) V-groove and (411) ridge GaAs structures which were surrounded by AlGaAs layer to show the potential implication of this method for the formation of quantum wires.



Hide All
1. Arakawa, Y., and Yariv, A., IEEE J. Quantum Electron. QE-21, 1666 (1985).
2. Skocpol, W. J., Jackel, L. D., Hu, E. L., Howard, R. E., and Fetter, L. A., Phy. Rev. Lett. 49, 954 (1982).
3. Temkin, H., Dolan, G. J., Panish, M. B., and Chu, S. N. G., Appl. Phys. Lett. 50, 413 (1987).
4. Kapon, E., Hwang, D. M., and Bhat, R., Phy. Rev. Lett. 63, 430 (1989).
5. Tsukamoto, S., Nagamune, Y., Nishioka, M., and Arakawa, Y., J. Appl. Phys. 71, 533 (1992).
6. Tsai, C. S., Lebens, J. A., Ahn, C. C., Nouhi, A., and Vahala, K. J., Appl. Phys. Lett. 60, 240 (1992).
7. Tsukamoto, S., Nagamune, Y., Nishioka, M., and Arakawa, Y., Appl. Phys. Lett. 62, 49 (1993).
8. Kojima, K., Mitsunaga, K., and Kyuma, K., Appl. Phys. Lett. 55, 882 (1989).
9. Hersee, S. D., Barbier, E., and Blondeau, R., J. Cryst. Growth 77, 310 (1986).
10. Shimomura, S., Wakejima, A., Adachi., A. Okamoto, Y., Sano, N., Murase, K., and Hiyamizu, S., Jpn. J. Appl. Phys. 32, L1728 (1993).
11. Chadi, D. J., Phys. Rev. B.29, 786 (1984).
12. Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., Mat. Res. Symp. Proc. 281, 37 (1993).
13. Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., ETRI Journal 16, 1 (1994).
14. Ro, J. R., Park, S. J., Kim, S. B. and Lee, E. H., J. Cryst. Growth 150, 627 (1995); S. J. Park, J. R. Ro, J. K. Sim, and E. H. Lee, J. Cryst. Growth 136, 138 (1994).
15. Smith, J. S., Derry, P. L., Margalit, S., and Yariv, A., Appl. Phys. Lett. 47, 712 (1985).
16. Ohtsuka, M., and Miyazawa, S., J. Appl. Phys. 64, 3522 (1988).
17. Tsang, W. T., and Cho, A. Y., Appl. Phys. Lett. 30, 293 (1977).
18. Kapon, E., Hwang, D. M., Walther, M., Bhat, R. and Stoffel, N. G., Surf. Sci. 267, 593 (1992).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed