Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T15:54:12.173Z Has data issue: false hasContentIssue false

Fabrication of Thermoelectric Devices Using AlInN and InON Films prepared by reactive radio-frequency sputtering

Published online by Cambridge University Press:  01 February 2011

S. Yamaguchi
Affiliation:
Department of Electrical, Electronic and Information Engineering, Kanagawa University, 3–27–1 Rokkakubashi, Kanagawa-ku, Yokohama, 221–8686, Japan Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2 Umezono 1–1–1, Tsukuba, Japan, 305–8568
R. Izaki
Affiliation:
Department of Electrical, Electronic and Information Engineering, Kanagawa University, 3–27–1 Rokkakubashi, Kanagawa-ku, Yokohama, 221–8686, Japan
N. Kaiwa
Affiliation:
Department of Electrical, Electronic and Information Engineering, Kanagawa University, 3–27–1 Rokkakubashi, Kanagawa-ku, Yokohama, 221–8686, Japan
S. Sugimura
Affiliation:
Department of Electrical, Electronic and Information Engineering, Kanagawa University, 3–27–1 Rokkakubashi, Kanagawa-ku, Yokohama, 221–8686, Japan
A. Yamamoto
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2 Umezono 1–1–1, Tsukuba, Japan, 305–8568
Get access

Abstract

We have studied the thermoelectric properties of AlInN and InON films prepared by reactive radio-frequency (RF) sputtering. We have fabricated thermoelectric devices which are composed of 20-pair nitride or oxynitride films with Chromel metal. For a AlInN device, the maximum output power was 7.6×10-7 W at ΔT = 257K, and for a InON device, that was 6.5×10-8 W at ΔT = 214K.

Type
articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mahan, G., Sales, B., and Sharp, J., Phys. Today 50, 42 (1997).Google Scholar
2. Mahan, G. D., Solid State Phys. 51, 81 (1998).Google Scholar
3. Shin, W., Murayama, M., Ikeda, K., and Sago, S., Jpn. J. Appl. Phys. 39, 1254 (2000).Google Scholar
4. Bhattacharya, S., Pope, A. L., Littleton, R. T., Tritt, T. M., Ponnambalam, V., Xia, Y., and Poon, S. J., Appl. Phys. Lett. 77, 2476 (2000).Google Scholar
5. Dismukes, J. P., Ekstrom, L., Steigmeier, E. F., Kudman, I., and Beers, D. S., J. Appl. Phys. 35, 2899 (1964).Google Scholar
6. Sales, B. C., Mandrus, D., and Williams, R. K., Sicence 272, 1325 (1996).Google Scholar
7. Yamaguchi, S., Izaki, R., Yamagiwa, K., Taki, K., Iwamura, Y., and Yamamoto, A., Appl. Phys. Lett. ( in press).Google Scholar
8. Yamaguchi, S., Kariya, M., Nitta, S., Amano, H., and Akasaki, I., Appl. Phys. Lett. 76, 876 (2000).Google Scholar
9. Yamaguchi, S., Iwamura, Y., and Yamamoto, A., Jpn. J. Appl. Phys. 41, L1354 (2002).Google Scholar
10. Yamaguchi, S., Iwamura, Y., and Yamamoto, A., Appl. Phys. Lett. 82, 2065 (2003).Google Scholar