Skip to main content Accessibility help
×
Home

Fabrication of Semiconductor Nanostructures With an Atomic Force Microscope

  • E. S. Snow (a1) and P. M. Campbell (a1)

Abstract

An AFM-based nanolithography process is described. We employ the local electric field of a metal-coated AFM tip which is operated in air to selectively oxidize regions of a H-passivated Si surface. The resulting oxide, ∼ 3 nm thick, is used as a mask for selective etching of the unoxidized regions of Si. This AFM-based fabrication process is fast, reliable, simple to perform and is well suited for device fabrication. We apply this technique to the fabrication of Si and GaAs nanostructures, as well as to the fabrication of a nanometer-scale Si side-gated transistor. In addition, we discuss the ultimate resolution limits of the technique.

Copyright

References

Hide All
1. Eigler, D. M. and Schweizer, E. K., Nature 344, 524 (1990).
2. McCord, M. A. and Pease, R. F. W., J. Vac. Sci. Technol. B 6, 293 (1988).
3. DeLozanne, A. L., Ehrichs, E. E. and Smith, W. F., J. Phys.: Condens. Matter 5, A409 (1993).
4. Stockman, L., et al., Appl. Phys. Lett. 62, 2935 (1993).
5. Dagata, J. A., et al., Appl. Phys. Lett. 56, 2001 (1990).
6. Snow, E. S. and Campbell, P.M., Appl. Phys. Lett. 64, 1932 (1994).
7. Snow, E. S., Campbell, P. M. and McMarr, P. J., Appl. Phys. Lett. 63, 749 (1993).
8. Snow, E. S., Campbell, P. M and Shanabrook, B. V., Appl. Phys. Lett. 63, 3488 (1993).
9. Minne, S. C., et al., J. Vac. Sci. B (in press).
10. Campbell, P. M., Snow, E. S. and McMarr, P. J., Appl. Phys. Lett. 66, 1388 (1995).
11. Minne, S. C., et al., Appl. Phys. Lett. 66, 703 (1995).
12. Dagata, J. A., et al., J. Vac. Sci. B 9, 1384 (1991).
13. Barniol, N., Perez-Murano, F. and Aymerich, X., Appl. Phys. Lett. 61, 462 (1992).
14. Sugimura, H., Kitamura, N. and Masuhara, H., Jpn. J. Appl. Phys. 33, L143 (1994).
15. Liming Tsau, Dawen Wang and Wang, K. L., Appl. Phys. Lett. 64, 2133 (1994).
16. Dawen Wang, Liming Tsau and Wang, K. L., Appl. Phys. Lett. 65, 1415 (1994).
17. Lyding, J. W., et al., Appl. Phys. Lett. 64, 2010 (1994).
18. Shen, T. -C., et al., Appl. Phys. Lett. 66, 976 (1995).
19. Sugimura, H., et al., Appl. Phys. Lett. 63, 1288 (1993).
20. Campbell, P. M., Snow, E. S. and McMarr, P. J., Solid-State Electronics 37, 583 (1994).
21. Snow, E. S., Campbell, P. M. and McMarr, P. J., Nanotechnology (in press).
22. McMarr, P. J., et al., J. of Appl. Phys. 67, 7211 (1990).
23. Tiwari, S., Wright, S. L. and Batey, J., IEEE Electron Devices Lett. 9, 488 (1988).
24. Fountain, G. G., et al., Electon. Lett. 24, 1134 (1988).
25. Palik, E. D., Glembocki, O. J. and Stahlbush, R. E., J. Electrochem. Soc. 135, 3126 (1988).
26. Kramer, N., et al., Appl. Phys. Lett. 66, 1325 (1995).
27. Ogawa, K., et al., Appl. Phys. Lett. 66, 1228 (1995).
28. Snow, E. S., etal., Appl. Phys. Lett. 66, 1729 (1995).

Fabrication of Semiconductor Nanostructures With an Atomic Force Microscope

  • E. S. Snow (a1) and P. M. Campbell (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed