Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T11:05:08.768Z Has data issue: false hasContentIssue false

Fabrication of Polycrystalline Si1−xGex Films on Oxide for Thin-Film Transistors

Published online by Cambridge University Press:  15 February 2011

Julie A. Tsai
Affiliation:
Department of Materials Science and Engineering
Andrew J. Tang
Affiliation:
Department of Electrical Engineering and Computer ScienceMicrosystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA 02139
Rafael Reif
Affiliation:
Department of Electrical Engineering and Computer ScienceMicrosystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Polycrystalline-Si1−xGex films have been formed by various methods on oxide-coated Si substrates at temperatures ≤600°C. Compared to thermal growth, plasma deposition of poly-Si1−xGex promotes smoother films with smaller grains having a {200}-dominated texture. Poly-Si1−xGex Alms formed by plasma deposition of amorphous-Si1-xGex followed by a crystallization anneal have an even smoother surface with grain sizes enhanced by an order of magnitude and a weak {111} grain texture. Hydrogen incorporated in amorphous-Si1−xGex evolves completely during crystallization without disrupting the smooth surface morphology. The largest grain sizes (∶1.3μm) are achieved in poly-Si1−xGex films formed by Si+ ion implantation for amorphization with a subsequent recrystallization anneal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. King, T-J. and Saraswat, K.C., IEDM Tech. Dig., 567 (1991).Google Scholar
2. King, T-J., McVittie, J.P., Saraswat, K.C., and Pfiester, J.R., IEEE Trans. Electron Dev., 41 (2), 228 (1994).Google Scholar
3. King, T-J., Pfiester, J.R., Shott, J.D., McVittie, J.P., and Saraswat, K.C., IEDM Tech. Dig., 253 (1990).Google Scholar
4. Grider, D.T., Ozturk, M.C., Zhong, Y., Wortman, J.J., and Littlejohn, M.A., TechCon’90 Extended Abstracts, 293 (1990).Google Scholar
5. Tsai, J.A. and Reif, R., Mater. Res. Soc. Proc. 317, (1993), in press.Google Scholar
6. Reif, R. and Knott, J.E., Electron. Lett., 17 (17), 586 (1981).CrossRefGoogle Scholar
7. Noguchi, T., Hayashi, H., and Ohshima, T., Jpn. J. Appl. Phys., 25 (2), L121 (1986).Google Scholar
8. Kung, K. T-Y. and Reif, R., J. Appl. Phys., 64 (4), 1638 (1987).Google Scholar
9. Wu, I.-W., Chiang, A., Fuse, M., Ovecoglu, L., and Huang, T.Y., J. Appl. Phys., 65 (10), 4036 (1989).Google Scholar
10. Hawkins, W.G., IEEE Trans. Electron Dev., 33 (4), 477 (1986).Google Scholar
11. Hatalis, M.K. and Greve, D.W., IEEE Electron Dev. Lett., 8 (8), 361 (1987).Google Scholar
12. Noguchi, T., Ohshima, T., and Hayashi, H., Jpn. J. Appl. Phys., 28 (1), 146 (1989).Google Scholar
13. Turner, W.A., Pang, D., Wetsel, A.E., Jones, S.J., Paul, W., and Chen, J.H., Mater. Res. Soc. Proc. 192, 493 (1990).Google Scholar
14. Kennedy, E.F., Csepregi, L., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys., 48 (10), 4241 (1977).Google Scholar