Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T14:50:19.326Z Has data issue: false hasContentIssue false

Fabrication of p+/n Ultra Shallow Junctions (USJ) in silicon by excimer laser doping from spin-on glass sources

Published online by Cambridge University Press:  17 March 2011

S. Coutanson
Affiliation:
CNRS/PHASE, BP 20 – 67037, Strasbourg Cedex 02, France
E. Fogarassy
Affiliation:
CNRS/PHASE, BP 20 – 67037, Strasbourg Cedex 02, France
J. Venturini
Affiliation:
SOPRA-SA, 26, rue Pierre Joigneaux, 92270 Bois-Colombes, France, e-mail: stephane.coutanson@phase.c-strasbourg.fr
Get access

Abstract

In this work was investigated a simple laser doping method employing doped oxide glass films as dopant source (up to 2.1021cm−3) which are deposited onto silicon by the spin coating technique. Both short (20 ns) and long (200 ns) pulse duration excimer laser beams were used to deposit a large amount of energy in a short time onto the near-surface region. Under suitable conditions, the irradiation leads to surface melting and dopant incorporation by liquid phase diffusion from the surface. Boron distribution profiles in the two pulses duration regimes were studied as well as their electrical properties, and the junction formation of less than 20 nm in depth was demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The International Technology Roadmap for Semiconductors, http://public.itrs.net/, (2003).Google Scholar
2. Cleavelin, C. Rinn, Covington, B. C. and Larson, L. A., J. Vac. Sci. Technool. B18(1), 346 (2000).Google Scholar
3. Chong, Y. F., Pey, K. L., Wee, A. T. S., See, A., Chan, L., Lu, Y. F., Song, W. D. and Chua, L. H., Appl. Phys. Lett. 76, 3197 (2000).Google Scholar
4. Fortunato, G., Mariucci, L., Stanizzi, M., Privitera, V., Whelan, S., Spinella, C., Mannino, G., Italia, M., Bongiorno, C., Mittiga, A., Nucl. Instrum. Methods Phys. Res. B 186, 401 (2002).Google Scholar
5. Hernandez, M., Venturini, J., Zahorski, D., Boulmer, J., Débarre, D., Kerrien, G., Sarnet, T., Laviron, C., Semeria, M.N., Camel, D., Santailler, J.L., Appl. Surf. Sci. 208–209, 345351 (2003).Google Scholar
6. Sigmon, T. W., Mat. Res. Soc. Symp. Proc. 75, 619 (1987).Google Scholar
7. Slaoui, A., Foulon, F., Bianconi, M., Correra, L., Nipoti, R., Stuck, R., Unamuno, S. de, Fogarassy, E. and Nicoletti, S., Mat. Res. Soc. Symp. Proc. 129, 591 (1989).Google Scholar
8. Krammer, K.-J., Talwar, S., McCarthy, A. M. and Weiner, K. H., IEEE Electorn. Device Lett. 17, 461 (1996).Google Scholar
9. Fogarassy, E., Pattyn, H., Elliq, M., Slaoui, A., Prevot, B., Stuck, R., Unamuno, S. de and Mathé, E. L., Appl. Surf. Sci. 69, 231241 (1993).Google Scholar
10. Kim, C., Jung, S.-H., Jeon, J.-H. and Han, M.-K., Thin Solid Films 397, 47 (2001).Google Scholar
11. Unamuno, S. de and Fogarassy, E., Appl. Surf. Sci. 36, 111 (1989).Google Scholar