Skip to main content Accessibility help
×
Home

Fabrication of Piezoelectric ZnO and PZT Films for FPW Device

  • Sang Hoon Yoon (a1) and Dong-Joo Kim (a2)

Abstract

Piezoelectric ZnO and PZT films for acoustic wave device have been investigated. The films used for acoustic wave devices require textured structure, high piezoelectric coefficients, and high electromechanical coupling coefficients, because the piezoelectric films launch and receive the acoustic wave. We fabricated ZnO films by RF magnetron sputtering, and PZT films by chemical solution deposition (CSD). Results showed that uniform, dense and highly textured films were obtained under optimal process parameters. The film texture was controlled by modifying process parameters, such as gas kinds, gas ratio, and substrate type for sputtered ZnO films, and the presence of chelating agent, temperature of heat treatment, and substrate type for solution derived PZT films. Flexural plate wave (FPW) device has been successfully integrated onto 4-inch silicon wafers with optimized piezoelectric films.

Copyright

References

Hide All
[1] Pyun, J. C., Beutel, H., Meyer, J.-U., Ruf, H. H., Biosens. Bioelectron. 13 (1998) 839845.
[2] Hickernell, F. S., IEEE Trans. Sonics Ultrasonics 32 (1985) 621629.
[3] Lee, Y. S., Yoon, D. S., Kim, T. S., Integr. Ferroelectr. 69 (2005) 391400.
[4] Krunks, M., Mellikov, E., Thin Solid Films 270 (1995) 3336.
[5] Gorla, C. R., Emanetoglu, N. W., Liang, S., Mayo, W. E., Lu, Y., Wraback, M., Shen, H., J. Appl. Phys. 85 (1999) 25952602.
[6] Choi, J. H., Tabata, H., Kawai, T., J. Crystal Growth 226 (2001) 493500.
[7] Bao, D., Gu, H., Kuang, A., Thin Solid Films 312 (1998) 3739.
[8] Aita, C. R., Lad, R. J., Tisone, T. C., J. of Appl. Phys. 51 (1980) 64056410.
[9] Jou, J. H., Han, M. Y., Cheng, D. J., J. Appl. Phys. 71 (1992) 43334336.
[10] Kim, H. W., Kim, N. H., Mater. Sci. Semicond. Process. 7 (2004) 16.
[11] Water, W., Chu, S. Y., Mater. Lett. 55 (2002) 6772.
[12] Ondo-Ndong, R., Ferblantier, R., Kalfioui, M. A., Boyer, A., Foucaran, A., J. Crystal Growth 255 (2003) 130135.
[13] Shrout, T. R., Zhang, S. J., Eitel, R., Stringer, C., Randall, C. A., IEEE International Ultrasonics, Ferroelectrics, and Frequency Control (2004) 126129.
[14] Malic, B., Kosec, M., Smolej, K., Stavber, S., J. Eur. Ceram. Soc. 19 (1999) 13451348.
[15] Hwang, K. S., Manabe, T., Nagahama, T., Yamaguchi, I., Kumagai, T., Mizuta, S., Thin Solid Films 347 (1999) 106111.
[16] Law, C. W., Tong, K. Y., Li, J. H., Li, K., Thin Solid Films (1998) 220224.
[17] Weng, L., Bao, X., Sagoe-Crentsil, K., Mater. Sci. Eng. B 96 (2002) 307312.
[18] Yoshino, Y., Inoue, K., Takeuchi, M., Ohwada, K., Vacuum 51 (1998) 601607.
[19] Aita, C. R., Purdes, A. J., Lad, R. J., Funkenbusch, P. D., J. Appl. Phys. 51 (1980) 55335536.
[20] Krupanidhi, S. B., Sayer, M., J. Appl. Phys. 56 (1984) 33083318.
[21] Crisler, D. F., Cupal, L. J., Moore, A. R., Proc. of IEEE 56 (1968) 225226.
[22] Schowalter, L. J., Fathauer, R. W., Goehner, R. P., Turner, L. G., DeBlois, R. W., Hashimoto, S., Peng, J. L., Gibson, W. M., Krusius, J. P., J. Appl. Phys. 58 (1985) 302308.
[23] Norga, G. J., Vasiliu, F., Fe, L., Wouters, D. J., Biest, O. V. d., J. Mater. Res. 18 (2003) 12321238.
[24] Schwartz, R. W., Voigt, J. A., Boyle, T. J., Christenson, T. A., Buchheit, C. D., Ceram. Eng. Sci. Proc. 16 (1995) 10451056.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed