Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-06T02:48:27.707Z Has data issue: false hasContentIssue false

Fabrication Of La0.7Sr0.3MnO3/La0.5Sr0.5CoO3/La0.7Sr0.3MnO3 Heterostructures for Spin Valve Applications

Published online by Cambridge University Press:  10 February 2011

M. C. Robson
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742
S. B. Ogale
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742
R. Godfrey
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742
T. Venkatesan
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 also Department of Electrical Engineering, University of Maryland, College Park, MD 20742
M. Johnson
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
R. Ramesh
Affiliation:
Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 also Department of Nuclear and Materials Engineering, University of Maryland, College Park, MD 20742
Get access

Abstract

Epitaxial growth of oxide heterostructures, which may be utilized in spin valve applications, has been demonstrated. The heterostructures consist of two ferromagnetic layers separated by a nonmagnetic metallic interlayer. The ferromagnetic material used is the manganese perovskite oxide, La0.7Sr0.3MnO3, while the metallic oxide interlayer is La0.5Sr0.5CoO3. X-ray diffraction spectra demonstrate the high structural quality of the heterostructures. The magnetization of the heterostructure as a function of magnetic field measured at room temperature yields a double hysteresis loop that is characteristic of this type of spin valve structure. The behavior of this double hysteresis loop is also examined as a function of the metallic interlayer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F. and Paz De Araujo, C. A., Science 246, 1400 (1989).Google Scholar
2. Derbyshire, K. and Korczynski, E., Solid State Technology, Sept., 57 (1995).Google Scholar
3. Brug, J. A., Anthony, T. C., and Nickel, J. H., MRS Bulletin, Sept., 23 (1996).Google Scholar
4. Rajeswari, M., Chen, C. H., Goyal, A., Kwon, C., Robson, M. C, Ramesh, R., Venkatesan, T., and Lakeou, S., Appl. Phys. Lett. 68, 3555 (1996).Google Scholar
5. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
6. deGennes, P. -G., Phys. Rev. 118, 141 (1960).Google Scholar
7. Millis, A. J., Shraiman, Boris I., and Mueller, R., Phys. Rev. Lett. 77, 175 (1996).Google Scholar
8. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, 413 (1994).Google Scholar
9. Xiong, G. C, Li, Q., Ju, H. L., Mao, S. N., Senapati, L., Xi, X. X., Greene, R. L., and Venkatesan, T., Appl. Phys. Lett. 66, 1427 (1995).Google Scholar
10. Gong, G.-Q., Canedy, C., Xiao, G., Sun, J. Z., Gupta, A., and Gallagher, W. J., Appl. Phys. Lett. 67, 1783 (1995).Google Scholar
11. Robson, M. C, Kwon, C., Lofland, S. E., Bhagat, S. M., Rajeswari, M., Venkatesan, T., and Ramesh, R., (unpublished).Google Scholar
12. Egelhoff, W. F. Jr, Ha, T., Misra, R. D. K., Kadmon, Y., Nir, J., Powell, C. J., Stiles, M. D., McMichael, R. D., Lin, C. -L., Sivertsen, J. M., Judy, J. H., Takano, K., Berkowitz, A. E., Anthony, T. C., and Brug, J. A., J. Appl. Phys. 78, 273 (1995).Google Scholar
13. Park, J. H., Vescovo, E., Kim, H.-J., Kwon, C., Ramesh, R., and Venkatesan, T., (preprint).Google Scholar
14. Ohring, M., The Materials Science of Thin Films, (Academic Press, Inc., San Diego, 1992), Ch. 7.Google Scholar