Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T15:46:49.075Z Has data issue: false hasContentIssue false

Fabrication of a Free-Standing, Synthetic, Single Crystal Diamond Plate Using Ion Implantation and Plasma-Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  21 February 2011

J.B. Posthill
Affiliation:
Research Triangle institute, Research Triangle Park, North Carolina 27709-2194
D.P. Malta
Affiliation:
Research Triangle institute, Research Triangle Park, North Carolina 27709-2194
T.P. Humphreys
Affiliation:
Research Triangle institute, Research Triangle Park, North Carolina 27709-2194
G.C. Hudson
Affiliation:
Research Triangle institute, Research Triangle Park, North Carolina 27709-2194
R.E. Thomas
Affiliation:
Research Triangle institute, Research Triangle Park, North Carolina 27709-2194
R.A. Rudder
Affiliation:
Research Triangle institute, Research Triangle Park, North Carolina 27709-2194
R.J. Markunas
Affiliation:
Research Triangle institute, Research Triangle Park, North Carolina 27709-2194
Get access

Abstract

Using a specific combination of energetic and chemical processes we have grown homoepitaxial diamond on and lifted it off of a type Ia natural C(100) crystal. Before growth, the C(100) crystal is exposed to a self implant of 190keV energy and dose of 1E16 cm-2. Low temperature (~600°C) homoepitaxial diamond growth conditions were used that are based on water-alcohol source chemistries. To achieve layer separation (lift-off), samples were annealed to a temperature sufficient to graphitize the buried implant-damaged region. Contactless electrochemical etching was found to remove the graphite, and a transparent synthetic (100) single crystal diamond plate of 17.5μm thickness was lifted off. This free-standing diamond single crystal plate was characterized and found to be comparable to homoepitaxial films grown on unimplanted single crystal diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koizumi, S., Murakami, T., Inuzuka, T., and Suzuki, K., Appl. Phys. Lett. 57, 56 (1990).Google Scholar
2 Wang, L., Pirouz, P., Argoitia, A., Ma, J.S., and Angus, J.C., Appl. Phys. Lett. 63, 1336 (1993).Google Scholar
3 Argoitia, A., Angus, J.C., L. Wang, X.Ning, I., and Pirouz, P., J. appl. Phys. 73, 4305 (1993).Google Scholar
4 Zhu, W., Yang, P.C., and Glass, J.T., Appl. Phys. Lett. 63, 1640 (1993).Google Scholar
5 Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 60, 698 (1992).Google Scholar
6 Jiang, X., Klages, C.-P., Zachai, R., Hartweg, M., and Fusser, H.-J., Appl. Phys. Lett. 62, 3438 (1993).Google Scholar
7 Rudder, R.A., Posthill, J.B., Hudson, G.C., Malta, D.P., Thomas, R.E., Markunas, R.J., Humphreys, T.P., and Nemanich, R.J., Proc. 2nd intl. Conf. New Diamond Science and Technology, 1991 MRS int. Conf. Proc., 425 (1991).Google Scholar
8 Geis, M.W., Smith, H.I., Argoita, A., Angus, J., Ma, G.-H.M., Glass, J.T., Butler, J., Robinson, C.J., and Pryor, R., Appl. Phys. Lett. 58, 2485 (1991).Google Scholar
9 Janssen, G. and Giling, L.J., Diamond and Related Materials, Diamond Films '94, (II Ciocco, Italy, 1994) in press.Google Scholar
10 Posthill, J.B., Malta, D.P., Hudson, G.C., Thomas, R.E., Humphreys, T.P., Hendry, R.C., Rudder, R.A., and Markunas, R.J., submitted for publication - in review (1995).Google Scholar
11 Vendor for polished and oriented diamond single crystals: Harris Diamond Corp., Mount arlington, New Jersey, USA; distributor for: Drukker international, Cuijik, the Netherlands.Google Scholar
12 Rudder, R.A., Hudson, G.C., Posthill, J.B., Thomas, R.E., Hendry, R.C., Malta, D.P., Markunas, R.J., Humphreys, T.P., and Nemanich, R.J., Appl. Phys. Lett. 60, 329 (1992).Google Scholar
13 Posthill, J.B., George, T., Malta, D.P., Humphreys, T.P., Rudder, R.A., Hudson, G.C., Thomas, R.E., and Markunas, R.J., Proc. 51st ann. Meeting Microsc. Soc. of america, edited by Bailey, G.W. and Rieder, C.L. (San Francisco Press, 1993) 1196.Google Scholar
14 Parikh, N.R., Hunn, J.D., McGucken, E., Swanson, M.L., White, C.W., Rudder, R.A., Malta, D.P., Posthill, J.B., and Markunas, R.J., Appl. Phys. Lett. 61, 3124 (1992).Google Scholar
15 Marchywka, M., Pehrsson, P.E., Vestyck, D.J. Jr., and Moses, D., Appl. Phys. Lett. 63, 3521 (1993).Google Scholar
16 Bergman, L., McClure, M.T., Glass, J.T., and Nemanich, R.J., J. appl. Phys. 76, 3020 (1994).Google Scholar
17 Graham, R.J. and Ravi, K.V., Appl. Phys. Lett. 60, 1310 (1992).Google Scholar
18 Malta, D.P., Posthill, J.B., Rudder, R.A., Hudson, G.C., and Markunas, R.J., J. Mater. Res. 8, 1217 (1993).Google Scholar