Skip to main content Accessibility help
×
Home

Fabrication of 2-D and 3-D Photonic Bandgap Structures Using Laser-assisted Imprinting of Self-assembled Particles

  • Y.F. Lu (a1), L.P. Li (a2), K.K. Mendu (a2), J. Shi (a2), D.W. Doerr (a2) and D.R. Alexander (a2)...

Abstract

Fabrication of 2-D and 3-D photonic bandgap (PBG) structures on silicon substrates using laser-assisted nanoimprinting of silica particles has been investigated. Monolayers of silica particles, with different diameters ranging from 160 nm to 5 νm, were deposited on silicon substrates by self-assembly. A quartz plate, which is transparent to the laser wavelength of 248 nm, was tightly placed on the substrate surface. A KrF excimer laser beam with the wavelength of 248 nm was vertically irradiated on the quartz/nanoparticle/silicon structure. The silica particles were imprinted into silicon substrates by the quartz to form a 2-D PBG structure due to the transient Si surface melting during the laser pulse. 3-D PBG structures can be fabricated by directly imprinting multilayer self-assembled silica particles into Si substrates. They can also be fabricated by repeating a process cycle of silica nanoparticles self-assembly, amorphous Si layer deposition, and simultaneous laser melting, imprinting and recrystallization.

Copyright

References

Hide All
1. McCord, M. A., J. Vac. Sci. Technol. B 15, 2125 (1997).
2. Dial, C. C. Cheng and Scherer, A., J. Vac. Sci. Technol. B 16, 3887 (1998).
3. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. and Zhuang, L., J. Vac. Sci. Technol. B 15, 2897 (1997).
4. Pease, R. F. W., J. Vac. Sci. Technol. B 10, 278 (1992).
5. Silverman, J. P., J. Vac. Sci. Technol. B 15, 2117 (1997).
6. Wallraff, G. M., Hinsberg, W. D., Chem. Rev., 99, 1801 (1999).
7. Ito, T., Okazaki, S., Nature, 406, 1027 (2000).
8. Haes, A. J., Haynes, C. L., Duyne, R. P. van, MRS Symp. 636, D4.8.1 (2001).
9. Stroscio, J. A., Eigler, D. M., Science, 254, 1319 (1991).
10. Liu, G. Y., Xu, S., Qian, Y., Acc. Chem. Res., 33, 457 (2000).
11. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., Science 272, 85 (1996).
12. Kamins, T. I., Ohlberg, D. A. A., and Williams, R. S., Appl. Phys. Lett. 74, 1773 (1999).
13. Huang, S. M., Hong, M. H., Lukyanchuk, B. S., Zheng, Y. W., Song, W. D., Lu, Y. F., and Chong, T. C., J. Appl. Phys. 92, 2495 (2002).
14. Ng, V., Lee, Y. V., Chen, B. T. and Adeyeye, A. O., Nanotechnology 13, 554 (2002).
15. Mosbacher, M., Chaoui, N., Siegel, J., Dobler, V., Solis, J., Boneberg, J., Afonso, C.N., and Leiderer, P., Appl. Phys. A: Mater. Sci. Process. 69, S331 (1999).
16. Burmeister, F., Schäfle, C., Keilhofer, B., Bechinger, C., Boneberg, J., and Leiderer, P., Adv. Mater. 10, 495 (1998).
17. Hulteen, J. C. and Duyne, R P. Van, J. Vac. Sci. Technol. A 3, 1553 (1995).
18. SLIM is a copyrighted program developed by Singh, Rajiv K. and Viatella, J. at Materials Science and Engineering Department at the University of Florida.
19. Hayashi, S., amamoto, Y. K, Sutuki, T., and Hirai, T., J. Colloid Interface Sci. 144, 538 (1991).
20. Luk'yanchuk, B.S., Zheng, Y.W. and Lu, Y.F., Proc. SPIE 4065, 576 (2000).
21. Stratton, J.A., Electromagnetic Theory, (McGraw-Hill, New York, 1941).
22. Hulst, H.C.Van de, Light Scattering by Small Particles, (Dover, New York, 1981).
23. Bohren, C.E. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, (Willey, New York, 1983).
24. Kerker, M., The Scattering of Light, (Academic, New York, 1969).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed