Skip to main content Accessibility help
×
Home

Fabrication and Investigation of the Metal-Ferroelectric-Semiconductor Structure with Pb(Zr0.53Ti0.47)O3 on AlxGa1-xN/GaN Heterostructures

  • B. Shen (a1), W. P. Li (a1), X. S. Wang (a1), F. Yan (a1), R. Zhang (a1), Z. X. Bi (a1), Y. Shi (a1), Z. G. Liu (a1), Y. D. Zheng (a1), T. Someya (a2) and Y. Arakawa (a2)...

Abstract

An AlxGa1-xN/GaN-based metal-ferroelectric-semiconductor (MFS) structure is developed by depositing a Pb(Zr0.53Ti0.47)O3 film on a modulation-doped Al0.22Ga0.78N/GaN heterostructure. In high-frequency capacitance-voltage (C-V) measurements, the sheet concentration of the two-dimensional electron gas at the Al0.22Ga0.78N/GaN interface in the MFS structure decreases from 1.56 × 1013cm-2to 5.6 × 1012cm-2under the –10 V applied bias. A ferroelectric C-V window of 0.2 V in width near –10V bias is observed, indicating that the AlxGa1-xN/GaN MFS structure can achieve memory performance without the reversal of the ferroelectric polarization. The results indicate that AlxGa1-xN/GaN heterostructures are promising semiconductor channel candidates for MFS field effect transistors.

Copyright

References

Hide All
1. Yu, E. T., Sullivan, G. J., Asbeck, P. M., Wang, C. D., Qiao, D. and Lau, S. S., Appl. Phys. Lett., 71, 2794 (1997)
2. Burn, J., Chu, K., Schaff, W. J., Eastman, L. F., Khan, M. A., Chen, Q., Yang, J. W., Shur, M. S., IEEE Eletron. Device Lett., 18, 141 (1997)
3. Mohammad, S. N., Fan, Z. F., Salvador, A., Aktas, O., Botchkarev, A. E., Kim, W., Morkoc, H., Appl. Phys. Lett., 69, 1420 (1996)
4. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Kozojoy, P., Denbarrs, S. P., Mishra, U. K., Appl. Phys. Lett., 69, 1438 (1996)
5. Khan, M. A., Hu, X., Sumin, G., Lunev, A., Yang, J., Gaska, R. and Shur, M. S., IEEE Eletron Device Lett., 21, 63 (2000)
6. Pala, N., Gaska, R., Shur, M., Yang, J. W. and Khan, M. A., MRS Internet J. Nitride Semicond. Res., 5S1, W11.9 (2000)
7. Kawai, H., Hara, M., Nakamura, F., Asatsuma, T., Kobayashi, T., Imanaga, S., J. Cryst. Growth, 189, 738 (1998)
8. Imanaga, S. and Kawai, H., Jpn. J. Appl. Phys., 37, 5906 (1998)
9. Rost, T. A., Lin, He, and Rabson, Thomas A., Appl. Phys. Lett., 59, 3654 (1991)
10. Wu, S. Y., IEEE Tran. On Electron Devices, ED21, 499 (1974)
11. Buhay, H., Sinharoy, S., Kasner, W. H., Francombe, M. H., Lampe, D. R. and Stepke, E., Appl. Phys. Lett., 58, 1470 (1991)
12. Matthew, S., Ramesh, R., Venkatesan, T. and Benedetto, J., Science. 276, 238 (1997)
13. Li, W. P., Zhang, R., Shen, J., Liu, Y. M., Shen, B., Chen, P., Zhou, Y. G.. Li, J., Yuan, X. L., Chen, Z. Z., Shi, Y., Liu, Z. G., Zheng, Y. D., Appl. Phys. Lett., 77, 564 (2000)
14. Ambacher, O., Freudenberg, F., Dimitrov, R., Angerer, H., Stutzmann, M., Jpn. J. Appl. Phys., 37, 2416 (1998)
15. Shen, B., Someya, T. and Arakawa, Y., Appl. Phys. Lett., 76, 2746 (2000)
16. Yin, J., Zhu, T., Liu, Z. G. and Yu, T., Appl. Phys. Lett., 75, 3698 (1999)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed