Skip to main content Accessibility help

Extracting Mobility-Lifetime Product in Solar Cell Absorbers Using Quantum Efficiency Analysis

  • Jeremy R. Poindexter (a1), Riley E. Brandt (a1), Niall M. Mangan (a1) and Tonio Buonassisi (a1)


The long-wavelength quantum efficiency (QE) response of photovoltaic absorbers is determined by the length scales for minority carrier collection. However, extracting quantitative measurements of minority carrier mobility-lifetime product (μτ) is complicated by uncertainty in other factors such as the depletion width, electric field, and the absorption coefficient. We apply previously developed methods to obtain estimates for μτ in a tin(II) sulfide (SnS) solar cell. We compare three analytic models for the minority carrier collection probability as a function of absorber depth to determine which model most accurately captures the behavior in our devices. For models in which multiple parameters are unconstrained, a random numerical search is used to optimize the fit to experimental QE for SnS. To identify sources of error, we perform a sensitivity analysis by fitting with SCAPS-1D. Our analysis shows that changes in absorption most strongly affect estimates for μτ, highlighting the need to obtain accurate, device-specific absorption data. Further modeling and experimental constraints are required to obtain self-consistent values for μτ that correspond to actual device performance.



Hide All
1. Arora, N. D., Chamberlain, S. G., and Roulston, D. J., Appl. Phys. Lett. 37, 325 (1980).
2. Hirsch, M., Brendel, R., Werner, J. H., and Rau, U., in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC) (IEEE, 1994), vol. 2, pp. 14541457.
3. Dugas, J., and Oualid, J., Sol. Cells. 20, 167176 (1987).
4. Albers, W., Haas, C., Vink, H. J., and Wasscher, J. D., J. Appl. Phys. 32, 2220 (1961).
5. Ramakrishna Reddy, K. T., Koteswara Reddy, N., and Miles, R. W., Sol. Energy Mater. Sol. Cells. 90, 30413046 (2006).
6. Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Brandt, R. E., et al. , Adv. Mater. 26, 7488–92 (2014).
7. Sinsermsuksakul, P., Sun, L., Lee, S. W., Park, H. H., Kim, S. B., et al. , Adv. Energy Mater. 4, 1400496 (2014).
8. Mangan, N. M., Brandt, R. E., Steinmann, V., Jaramillo, R., Li, J. V., et al. , in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 23732378.
9. Scheer, R., and Schock, H.-W., Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (WILEY-VCH Verlag & Co. KGaA, Weinheim, Germany, 2011).
10. Donolato, C., Appl. Phys. Lett. 46, 270 (1985).
11. Rau, U., and Brendel, R., J. Appl. Phys. 84, 6412 (1998).
12. Ramakrishna Reddy, K. T., Nwofe, P. A., and Miles, R. W., Electron. Mater. Lett. 9, 363366 (2013).
13. Gärtner, W. W., Phys. Rev. 116, 8487 (1959).
14. Galluzzi, F., J. Phys. D. Appl. Phys. 18, 685690 (1985).
15. Musselman, K. P., Ievskaya, Y., and MacManus-Driscoll, J. L., Appl. Phys. Lett. 101, 253503 (2012).
16. Burgelman, M., Nollet, P., and Degrave, S., Thin Solid Films. 361, 527532 (2000).
17. Eron, M., and Rothwarf, A., Appl. Phys. Lett. 44, 131 (1984).
18. Paire, M., Lombez, L., Donsanti, F., Jubault, M., Collin, S., et al. , 8620, 86200Z (2013).
19. Eron, M., J. Appl. Phys. 60, 2133 (1986).
20. Gokmen, T., Gunawan, O., and Mitzi, D. B., J. Appl. Phys. 114, 114511 (2013).
21. Grenet, L., Fillon, R., Altamura, G., Fournier, H., Emieux, F., et al. , Sol. Energy Mater. Sol. Cells. 126, 135142 (2014).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed