Skip to main content Accessibility help
×
Home

Exploring Back Contact Technology to Increase CdS/CdTe Solar Cell Efficiency

  • Alan L. Fahrenbruch (a1)

Abstract

The primary routes for increasing CdS/CdTe solar cell efficiency involve increasing free carrier density, reducing bulk and interface recombination, and/or reducing back contact barrier height. This paper focuses on the role of the back contact barrier in increasing cell efficiency. Measurement of barrier height and back surface recombination are outlined and three CdTe/MX/M back contact prototypes, each with particular strengths, are discussed to bring out important issues.

Copyright

References

Hide All
1. Sites, J. and Pan, J., E-MRS (06), Nice. Thin Solid Films (07), in press.
2. Fahrenbruch, A., 4th World Conf. Photovoltaic Energy Conversion, Hawaii (06) p.376.
3. V, P.. Meyers, Solar Cells 27, 91 (89).
4. Reislöhner, U., Hädrich, M. et al. E-MRS (06). Thin Solid Films (07), in press.
5. Metzger, W. K, Romero, M. J, Dippo, P., and Young, M., 4th World Conf. Photovoltaic Energy Conv., Hawaii (06) p. 372.
6. Burgelman, M., Verschraegen, J., Degrave, S., Nollet, P. Thin Solid Films 480-1, 392 (05).
7. Niemegeers, A. and Burgelman, M., J. Appl. Phys., 81, 2881 (97).
8. Demtsu, S. H and Sites, J. R, Thin Solid Films 510, 320 (06).
8a. Agostinelli, G., Dunlop, E. D, Bätzner, D. L., Tiwari, A. N, Nollet, P., Burgelman, M., and Köntges, M., 3rd World Conf. Photovoltaic Energy Conv., Osaka (03) p. 356.
8b. Some experimental J-V characteristics can be fitted precisely by J = Jo(V-Vo)2, where V is the applied bias and Jo and Vo are constants.
9. Stollwerck, G. and Sites, J. R, 13th European PV Solar Energy Conf.,Nice, (95), p. 2020.
10. McCandless, B. E and Phillips, J., Titus, J., 2nd World PVSEC Conf., Vienna, (98), p. 448.
11. Klein, A., “Advances in Solid State Analysis,” 44, Springer (04) p. 13.
11a. Klein, A., Sauberlich, F., Späth, B., Schulmeyer, T., & Kraft, D., J. Mater. Sci. 42, 1890 (07).
12. Schroder, D., “Semiconductor Material & Device Characterization,” Wiley (06) p. 526, 550.
13. Kronik, L. and Shapira, Y., Surf. Interface Anal. 31, 954 (01). Also, Schroder op cit. p. 404.
13a. Narayanamurti, V. and Kozhenvnikov, M., Physics Reports 349, 447514 (01).
13b. Dharmadasa, I. M., Prog. in Crystal Growth and Character. of Mat'ls. 36, 249290 (98).
13c. Fowell, A. E., Williams, R. H et al. Semicond. Sci. Technol. 5, 346 (90).
14. Nollet, P., Burgelman, M., Degrave, S., and Beier, J., Proc. 28th IEEE Photovoltaic Specialists Conf. (02). p. 704.
15. Tousek, J., Kindl, D., Toušková, J., Dolhov, S., and Poruba, A., J. Appl. Phys. 89, 460 (01).
16. Gonzalas, M. A et al. J. Phys. IV France 125 411 (05).
17 Grunow, P. and Kunst, M., J. Appl. Physics 77, 2767 (95).
18. Mizeikis, V., Jarasiunas, K., Lovergine, N., and Kuroda, K., Thin Solid Films 364 186 (00).
19. Lee, C-T. and Bube, R. H, J. Appl. Phys. 54, 7041 (83).
20. Tung, R. T, Materials Science and Engineering Reports 35, 1138 (01).
20a. Gurumurthy, S., Bhat, H. L, and Kumar, V., Semicond. Sci. Technol. 14, 909 (99).
21. Visoly-Fisher, I., Sitt, A., Wahab, M., and Cahen, D., ChemPhysChem, 6, 277 (05).
22. Kraft, D., Thissen, A., Broetz, J., Flege, S., Campo, M., Klein, A., and Jaegermann, W., J. Appl. Phys. 94, 3589 (03).
23. Wu, X., Zhou, J., Duda, A., Yana, Y., Teeter, G., Asher, S., Metzger, W. K, Demtsu, S., Wei, S.-H., Noufi, R., 17th E-PSEC (06), Munich. Thin Solid Films (07), in press.
24. Britt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (93).
25. Hegedus, S. S and McCandless, B. E, Solar Energy Materials and Solar Cells 88, 75 (05).
26. Farag, B. S et al. Thin Solid Films 201, 231 (91) and. 247, 112 (94).
26a. Bruening, M. et al. J. Am. Chem. Soc. 116, 2977 (1994).
27. Späth, B. et al. E-MRS (06), Nice. Thin Solid Films (07), in press.
28. Viswanathan, V. et al. Proc. 28th IEEE Photovoltaic Spec. Conf., (00) p. 587.
29. Romeo, N., A. Bosio, and Canevari, V., Solar Energy 77, 795 (04).
29a. Batzner, D. L et al. Thin Solid Films 451, 536 (04).
30. Barri, K., Jayabal, M., Zhao, H., Morell, D. L, Asher, S., Pankow, J. W, Young, M. R, and Ferekides, C. S, Proc. 31st IEEE Photovoltaic Spec. Conf., (05) p. 287.
31. Rioux, D., Niles, S. W, and Hochst, H., J. Appl. Phys. 73, 8381 (93).
32. Späth, B., Fritsche, J., Klein, A., and Jaegermann, W., .Appl. Phys. Lett. 90, 62112 (07).
33. Makhratchev, K., Price, K. J, Ma, X., Simmons, D. A, Drayton, J., Ludwig, K., Gupta, A., Bohn, R. G, Compaan, A. D, Proc. 28th IEEE Photovoltaic Spec. Conf., (00) p. 475.
34. Gessert, T. A, Asher, S., Johnson, S., Duda, A., Young, M. R, and Moriarty, T., 4th World Conf. Photovoltaic Energy Conv., Hawaii (06) p. 432.
35. Tang, J., Mao, D., Ohno, T. R, Kaydanov, V., and Trefny, J. U, Proc. 26th IEEE Photovoltaic Specialists Conf. (97). p. 439.
36. Shaw, J. L et al. J. Vac. Sci. Technol. A6, 2752 (88).
37. Sutter, P.; Sutter, E., and Ohno, T.R., Applied Physics Letters; 84, 2100 (04).

Keywords

Exploring Back Contact Technology to Increase CdS/CdTe Solar Cell Efficiency

  • Alan L. Fahrenbruch (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed