Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T19:02:10.136Z Has data issue: false hasContentIssue false

Explanation of Observed P-Type Conductivity in Movpe ZnSE/GaAs Heterostructures

Published online by Cambridge University Press:  28 February 2011

O. Briot
Affiliation:
GES, USTL Place E. Bataillon, 34095 Montpellier Cedex 5, France On leave from ASM France, Rte -de St.Geoges d'Orques, 34990 Juvignac, France
T. Cloitre
Affiliation:
GES, USTL Place E. Bataillon, 34095 Montpellier Cedex 5, France
N. Tempier
Affiliation:
GES, USTL Place E. Bataillon, 34095 Montpellier Cedex 5, France
R. Sauvezon
Affiliation:
GES, USTL Place E. Bataillon, 34095 Montpellier Cedex 5, France
M. Averous
Affiliation:
GES, USTL Place E. Bataillon, 34095 Montpellier Cedex 5, France
R.L. Aulombard
Affiliation:
GES, USTL Place E. Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

Together with the advanced growth technologies of zinc selenide epitaxial films by MOVPE or MBE, severals workers have reported the observation of p-type conductivity in this material. However, there are some inconsistencies in most of the papers reporting such results.

We report here the MOVPE crystal growth of nominaly undoped ZnSe/GaAs S.I. layers using alkyls as precursors, and their optical and electrical characterizations. We show the possibility to observe p-type conductivity in ZnSe due to a hole accumulation at the interface in the GaAs side. This is consistent with a simple model taking Into account the conduction and valence bands discontinuities at the ZnSe/GaAs interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Neumark, G.F. J. Appl. Phys. 65, 4859 (1989)Google Scholar
2. Harrison, W.A. and Tersoff, J. J. Vac. Sci. Technol. B4–4, 1068 (1986)Google Scholar
3. Kowalczik, S.P., Kraut, E.A., Waldrop, J.R. and Grant, R.W. J. Vac Scd. Technol. 21–2, 482 (1982)Google Scholar
4. Colak, S., Marshall, T. and Cammack, D. Solid State Electronics, 32–8, 647 (1989)Google Scholar
5. Eppenga, R. Phys. Rev. B 40–15, 10402 (1989)Google Scholar
6. Walsh, D., Masuruk, K., Benzaken, M. and Weissfloch, P. Semicond. Scl. Technology 3, 116 (1988)Google Scholar
7. Houten, H. Van, Colak, S., Marshall, T. and Cammack, D. A. J. Appl. Phys. 66–7, 3047 (1989)Google Scholar
8. Olego, D. J. and Cammack, D. IV Int. Conf. on II-VI compounds, Berlin (1989)Google Scholar
9. Pages, O., Renucci, M. A., Briot, O., Tempier, N. and Aulombard, R.L. to be published in special issue of J. Cryst. Growth. I.C. MOVPE 5, AACHEN (1990)Google Scholar
10. Briot, O., Delmas, R., Tempier, N., Sauvezon, R. and Aulombard, R.L. J. Cryst. Growth 98, 857 (1989)Google Scholar
11. Yasuda, T., Mitsuismi, I. and Kukimoto, H. Appl. Phys. Lett. 52–1, 57 (1988)Google Scholar
12. Aulombard, R. L., Averous, M., Briot, O., Calas, J., Coquillat, D., Lascaray, J. P., Moulin, N. and Tempier, N. IV Int. Conf. on II-VI compounds, BERLIN (1989)Google Scholar
13. Tersoff, J. Phys. Rev. B 30–8, 4874 (1984); Phys. Rev. Letter 11-25, 2755 (1986)Google Scholar