Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-06T11:37:59.224Z Has data issue: false hasContentIssue false

Experimental Study and Modeling of Nonlinear Scattering in Polymer Dispersed Liquid Crystals

Published online by Cambridge University Press:  10 February 2011

M. Pacilli
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice cedex 02, France, sebbah@unice.fr
P. Sebbah
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice cedex 02, France, sebbah@unice.fr
P. Sixou
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice cedex 02, France, sebbah@unice.fr
C. Vanneste
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice cedex 02, France, sebbah@unice.fr
H. Guillard
Affiliation:
Polymage, 7 rue Verdi, 06000 Nice, France
Get access

Abstract

We investigate the optical limiting capabilities of composite materials consisting of nematic liquid crystal inclusions within a polymer matrix in the millisecond and CW regime. Preparation of the composite has been optimized to decrease the operation voltage. Clear evidence of light induced reorientation is observed. A numerical model is proposed to describe multiple linear and nonlinear light scattering in the time domain in this medium. Numerical simulations are compared to experiment and confirm promising limiting characteristics of such materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Khoo, I.C., Liquid Crystals: Physical Properties and nonlinear Optical Phenomena, Wiley Interscience, New York, 1994.Google Scholar
2. Zumer, S. and Doane, J.W., Phys.Rev. A34, p. 3373 (1986); S. Zumer, Phys. Rev. A37, p. 4006 (1988).Google Scholar
3. Kelly, J.R. and Palffy-Muhoray, P., Mol.Cryst.Liq.Cryst., 243, p. 1129 (1994); J. Kelly, W. Wu and P. Palffy-Muhoray, Mol.Cryst.Liq.Cryst. 223, p. 251–261 (1992).Google Scholar
4. Bloisi, F., Ruocchio, C., Terrecuso, P., and Vicari, L., Phys. Rev. E54, p. 52425248 (1996); F. Bloisi, C. Ruocchio, P. Terrecuso and L. Vicari, Optics Communications 123, p. 449–452 (1996); F. Bloisi, C. Ruocchio, P. Terrecuso and L. Vicari, Opt.Lett. 21, p. 95 (1996).Google Scholar
5. Boots, H.M.J., Neijzen, J.M., Paulissen, F.A.M.A., van, M. der Mark, Comelissen, H.J., Liq.Cryst., 22, p. 255264 (1997).Google Scholar
6. Vanneste, C., Sebbah, P. and Sornette, D., Europhys. Lett. 17, p. 715 (1992); D. Sornette, O. Legrand, F. Mortessagne, P. Sebbah and C. Vanneste, Phys. Lett. A, 178, p. 292 (1993); S. De Toro Arias and C. Vanneste, J. Phys. I (France) 7, p. 1071 (1997).Google Scholar
7. 0. Legrand, Mortessagne, F., Sebbah, P. and Vanneste, C., “A wave automaton for wave propagation in inhomogeneous anisotropic media”, to be published.Google Scholar
8. Palffy, P.-Muhoray, Michael Lee, A. and West, J.L., Mol.Cryst.Liq.Cryst., 179, p. 445460 (1990).Google Scholar
9. G.B. Al'tshuler, Ermolaev, V.S., Krylov, K.I., Manenkov, A.A. and Prokhorov, A.M., Opt, J..Soc.Am. B3, p. 660 (1986).Google Scholar