Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-19T07:33:28.445Z Has data issue: false hasContentIssue false

Experimental Characterization and Optical Modelling of Absorption and Light Trapping in a-Si:H Solar Cells on Textured Tco

Published online by Cambridge University Press:  21 February 2011

François Leblanc
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UPR A0258 du CNRS, Ecole Polytechnique, F - 91128 - PALAISEAU Cédex, FRANCE SOLEMS S.A., Z.I. Les Glaises, 3 rue Léon Blum, F - 91124 - PALAISEAU, FRANCE
Jérâme Perrin
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UPR A0258 du CNRS, Ecole Polytechnique, F - 91128 - PALAISEAU Cédex, FRANCE
Elizabeth. Cornil
Affiliation:
SOLEMS S.A., Z.I. Les Glaises, 3 rue Léon Blum, F - 91124 - PALAISEAU, FRANCE
Jacques Schmitt
Affiliation:
SOLEMS S.A., Z.I. Les Glaises, 3 rue Léon Blum, F - 91124 - PALAISEAU, FRANCE
Get access

Abstract

The quantitative description of the optical phenomena occuring in a-Si:H solar cells on textured substrates is a key issue to maximize the photovoltaic conversion efficiency. A semi-empirical numerical model is proposed taking into account the scattering induced by roughness at each interface of a multilayer structure. The scattered reflected and transmitted components are added to a classical matrix treatment of specular components. For each scattering angle, a new source beam is tracked in the subsequent layers. Light polarization and interference effects are properly taken into account and the energy deposited in each layer is derived. The model is tested on various structures and on a-Si:H p-i-n solar cells by angular-resolved reflectance and transmittance measurements and photothermal deflection spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gordon, R.G., Proscia, J., Ellis, F.B. and Delahoy, A.E., Solar Energy Mater. 18, 263 (1989)CrossRefGoogle Scholar
2. Schade, H. and Smith, Z.E, Appl. Opt. 24, 3221 (1985)Google Scholar
3. Morris, J., Arya, R.R., O'Dowd, J.G. and Wiederman, S., J. Appl. Phys. 67, 1079 (1990)Google Scholar
4. Leblanc, F., Perrin, J., Siéfert, J.M., Schmitt, J. and Godet, C., Proc. of the 5th Int. Photovoltaic Science and Engineering Conf. (PVSEC-5), Kyoto, 1990, p.253 Google Scholar
5. Leblanc, F., Perrin, J., Ollivier, P., Antoine-Labouret, A., Proc. of the 10th E.C. Photovoltaic Solar Energy Conf., Lisbon, 1991, edited by Luque, A., Sala, G., Palz, W., Dos Santos, G., and Helm, P. (Kluwer Academic Publishers, Dordrecht, 1991), p. 361 Google Scholar
6. Leblanc, F., Perrin, J., and Cornil, E., J. Non-Cryst. Solids 137&138, 1165 (1991)Google Scholar
7. Heavens, O.S., Optical Properties of Thin Solid Films (Dover, New-York, 1965)Google Scholar