Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T23:37:11.496Z Has data issue: false hasContentIssue false

Experiment and Modelisation Results on Laser Thermal Processing for Ultra-Shallow Junction Formation: Influence of Laser Pulse Duration

Published online by Cambridge University Press:  01 February 2011

J. Venturini
Affiliation:
SOPRA 26 rue Pierre Joigneaux, 92270 Bois Colombes, France.
M. Hernandez
Affiliation:
SOPRA 26 rue Pierre Joigneaux, 92270 Bois Colombes, France.
D. Zahorski
Affiliation:
SOPRA 26 rue Pierre Joigneaux, 92270 Bois Colombes, France.
G. Kerrien
Affiliation:
Institut d'Electronique Fondamentale, UMR CNRS 8622 Université Paris-Sud, Bât. 220, 91405 Orsay, France.
T. Sarnet
Affiliation:
Institut d'Electronique Fondamentale, UMR CNRS 8622 Université Paris-Sud, Bât. 220, 91405 Orsay, France.
D. Debarre
Affiliation:
Institut d'Electronique Fondamentale, UMR CNRS 8622 Université Paris-Sud, Bât. 220, 91405 Orsay, France.
J. Boulmer
Affiliation:
Institut d'Electronique Fondamentale, UMR CNRS 8622 Université Paris-Sud, Bât. 220, 91405 Orsay, France.
C. Laviron
Affiliation:
CEA-DRT - LETI/DTS - CEA/GRE 17, avenue des Martyrs, 38054 GRENOBLE CEDEX 9, France.
M.-N. Semeria
Affiliation:
CEA-DRT - LETI/DTS - CEA/GRE 17, avenue des Martyrs, 38054 GRENOBLE CEDEX 9, France.
D. Camel
Affiliation:
CEA-DRT - DTEN/LESA - CEA/GRE 17, avenue des Martyrs, 38054 GRENOBLE CEDEX 9, France.
J.-L. Santailler
Affiliation:
CEA-DRT - DTEN/LESA - CEA/GRE 17, avenue des Martyrs, 38054 GRENOBLE CEDEX 9, France.
Get access

Abstract

According to the International Technology Roadmap for Semiconductors (ITRS), the doping technology requirements for the MOSFET source and drain regions of the future CMOS generations lead to a major challenge. A critical point of this evolution is the formation of ultra-shallow junctions(USJ) for which present technologies, based on ion implantation and rapid thermal annealing, will hardly meet the ITRS specifications. Laser Thermal Processing (LTP) has been shown to be a potential candidate to solve this fundamental problem. In the present paper, LTP experiments have been performed with two XeCl excimer lasers (λ= 308 nm) with different pulse characteristics. The first laser (Lambda Physik, Compex 102) delivers 200 mJ laser pulses with a duration of ∼25 ns. The second laser is an industrial tool (SOPRA, VEL 15) that delivers 16 J laser pulses with a duration of ∼200 ns and allows to anneal a few cm die in a single laser shot. Here we examine the influence of the pulse duration on LTP of B+ (with and without Ge+ pre-amorphization) and BF2 implanted silicon samples on the basis of real-time optical monitoring of the laser induced melting/recrystallisation process, four-point probe resistivity measurements, secondary ion mass spectrometry (SIMS) depth profiles. Experimental results are compared to finite element modelisation (FIDAP Fluent Software) that takes into account both laser pulses. The activated dopant dose, junction depth and sheet resistance, as a function of the laser fluence and shot number for both lasers, confirm the efficiency of laser processing to realize ultra-shallow and highly doped junctions as required by the future CMOS generations. Influence of the pulse duration on the USJ formation process is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.The International Technology Roadmap for Semiconductors 2001.Google Scholar
2. Matsuda, T., Shishigushi, S. and Kitajima, H., Extended abstract of IWJT 2000, II-3, 29.Google Scholar
3. Fiory, A.T, Chawda, S.G., Madishetty, S., Mehta, V.R., and Ravindra, N. M., Proceeding of 9 th Int. Conference on advanced Thermal Processing of Semiconductors-RTP'2001, p227.Google Scholar
4. Gebel, T., Voelskow, M., Skorupa, W., Mannino, G., Privitera, V., Priolo, F., Napolitani, E. and Carnera, A., Nucl. Instr. And Meth. In Phys. Res. B 186, 287 (2002).Google Scholar
5. Huang, M. B. and Mitchell, I. V, Appl. Phys. Lett. 69, 2734 (1996)Google Scholar
6. Downey, D., Falk, S., Bertuch, A. and Marcus, S., J. Electron. Mater. 28, 1340 (1999)Google Scholar
7. Hernandez, M., Venturini, J., Zahorski, D., Boulmer, J., Debarre, D., Kerrien, G., Sarnet, T., Laviron, C., Semeria, M.N., Camel, D. and Santailler, J.L., Appl. Surf. Sci. 208-209, 345 (2003)Google Scholar
8. Fortunato, G., Mariucci, L., Stanizzi, M., Privitera, V., Whelan, S., Spinella, C., Mannino, G., Italia, M., Bongiorno, C. and Mittigia, A., Nucl.Instr.And Meth.InPhys.Res.B 186, 401 (2002)Google Scholar
9. Earles, S., Law, M., Jones, K., Talwar, S. and Corcoran, S., Mat. Res. Soc. Symp. Proc. 669, J4.1.1 (2001)Google Scholar
10. Débarre, D., Kerrien, G., Nogushi, T. and Boulmer, J. IEICE Trans. Electron. E85-C, 1098 (2002)Google Scholar
11. Kerrien, G., Hernandez, M., Laviron, C., Sarnet, T., Debarre, D., Noguchi, T., Zahorski, D., Venturini, J., Semeria, M.N. and Boulmer, J., Appl. Surf. Sci. 208-209, 277 (2003)Google Scholar
12. Jain, S. C., Schoenmaker, W., Lindsay, R., Stolk, P. A., Decoutere, S., Willander, M. and Maes, H. E., J. Appl. Phys. 91, 8919 (2002)Google Scholar
13. Yang, Shenzhi and Thompson, M. O., Mat. Res. Soc. Symp. Proc. 669, J7.4.1 (2001)Google Scholar