Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:07:41.767Z Has data issue: false hasContentIssue false

Excitons in Segmented Polymers for High Photo- and Electro-Luminesence Efficiency

Published online by Cambridge University Press:  21 March 2011

Arthur J. Epstein
Affiliation:
Department of PhysicsThe Ohio State University Columbus, Ohio 43210-1106, U.S.A Department of ChemistryThe Ohio State University Columbus, Ohio 43210-1106, U.S.A
Runguang Sun
Affiliation:
Department of PhysicsThe Ohio State University Columbus, Ohio 43210-1106, U.S.A
Daike Wang
Affiliation:
Department of ChemistryThe Ohio State University Columbus, Ohio 43210-1106, U.S.A
Terry L. Gustafson
Affiliation:
Department of ChemistryThe Ohio State University Columbus, Ohio 43210-1106, U.S.A
Erica M. Kyllo
Affiliation:
Department of ChemistryThe Ohio State University Columbus, Ohio 43210-1106, U.S.A
Frank C. Delucia Jr
Affiliation:
Department of ChemistryThe Ohio State University Columbus, Ohio 43210-1106, U.S.A
Qianbing Zheng
Affiliation:
Department of PhysicsThe Ohio State University Columbus, Ohio 43210-1106, U.S.A
Get access

Abstract

The photoluminesence (PL) quantum efficiency of poly(p-phenylene vinylene) (PPV) varies with preparation and processing. We report the achievement of nearly 100% PL quantum efficiency through design and synthesis of alternating rigid conjugated segments of dimethoxy -PV (three dimethoxy -phenyl and two vinyl units) and flexible nonconjugated segments along the polymer backbone. There is enhanced solubility in desired solvents and increased interchain separation through the incorporation of the methoxy sidegroups, forming poly [1,6-hexanedioxy -2,6-dimethoxy-1,4-phenylene]-1,2-ethenylene-[3,6-dimethoxy-1,4-phenylene]-1,2-ethenylene-[3,5-dimethoxy-1,4-phenylene], or GDBBC. The nearly temperature-independence of the PL decay at different emission wavelengths of the alternating block co-polymer (ABC) shows that the excitons are highly localized due to the blocking by non-conjugated segments as well as due to increased interchain separation due to the methoxy sidegroups. The contrasting temperature- and time- dependent results for the corresponding PV oligomer and PPV, supports the role of reduced exciton migration in achieving high quantum efficiency. The results are compared to the exciton confinement at the interface of light emitting electron and hole transporting polymers, forming an exciplex, for which the luminescence decay is also temperature independent. Electroluminescent devices using GDBBC as the lightemitting layer and incorporating poly[1-phenyl-2-(p-n-carbazolylphenyl) acetylene], (PDPA-Cz), as hole transporting layer, in the structure ITO/PDPACz/GDBBC/Alq/MgAg have ~1% external quantum efficiency with green emission from the GDBBC. EL devices based on exciplex emission are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, for example, Kraft, A., Grimsdale, A. C., and Holmes, A. B., Angew. Chem. Int. Ed. 37, 402 (1998), and references therein; Proc. of the Int. Conf. on Science and Technology of Synthetic Metals, Montpellier, France, July 1998, ed. by P. Bernier (Synth. Met.m 102 (1999)).Google Scholar
2 Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., and Holmes, A. B., Nature, 365, 628 (1993).Google Scholar
3 Baigent, D. R., Greenham, N. C., Grüner, J., Marks, R. N., Friend, R. H., Moratii, S. C., and Holmes, A. B., Synth. Met. 67, 3 (1994).Google Scholar
4 Wang, Y. Z., Gebler, D. D., Lin, L. B., Blatchford, J. W., Jessen, S. W., Wang, H. L., and Epstein, A. J., Appl. Phys. Lett., 68, 894 (1996).Google Scholar
5 Wang, Y. Z., Gebler, D. D., Fu, D. K., Swager, T. M., and Epstein, A. J., Appl. Phys. Lett., 68, 894 (1996).Google Scholar
6 Yan, M., Rothberg, L. J., Papadimitrakopoulos, F., Galvin, M. E., and Miller, T. M., Phys. Rev. Lett., 73, 744 (1994).Google Scholar
7 Yan, M., Rothberg, L. J., Kwock, E. W., and Miller, T. M., Phys. Rev. Lett., 75, 1992 (1995).Google Scholar
8 Blatchford, J. W., Jessen, S. W., Lin, L. B., Gustafson, T. L., Fu, D. F., Wang, H. L., Swager, T. M., MacDiarmid, A. G., and Epstein, A. J., Phys. Rev. B, 54, 5180 (1996).Google Scholar
9 Friend, R. H. and Greenham, N. C., Physical Properties of Polymers Handbook, ed. Mark, J. E. (AIP, Woodbury, 1996), 479487.Google Scholar
10 Greenham, N. C., Samuel, I. D. W., Hayes, G. R., Philips, R. T., Kessener, Y. A. R. R., Moratti, S. C., Holmes, A. B., and Friend, R. H., Chem. Phys. Lett., 89, 241 (1995).Google Scholar
11 Carter, J. C., Grizzi, I., Heeks, S. K., Lacey, D. J., Latham, S. G., May, P. G., Panos, O. Ruiz de los, Pichler, K., Towns, C. R., and Wittman, H. F., Appl. Phys. Lett., 71, 34 (1997).Google Scholar
12 Yang, Z., Sokolik, I., and Karasz, F.E., Macromolecules, 26, 1188 (1993).Google Scholar
13 Hu, B., Yang, Z. and Karasz, F. E., J. Appl. Phys., 76, 2419 (1994).Google Scholar
14 Kumar, N. D., Bhawalkar, J. D., and Prasad, P. N., Karasz, F. E., and Hu, B., Appl. Phys. Lett., 71, 999 (1997).Google Scholar
15 Hu, B. and Karasz, F. E., Synth. Met., 92, 157 (1998).Google Scholar
16 Ma, D., Hong, Z., Zhao, X., Jing, X. and Wang, F., Chinese. Phys. Lett., 13, 940 (1996).Google Scholar
17 Yang, Z., Hu, B., and Karasz, F. E., J. Mocromolecular Sci. Pure and Applied Chem., A35, 233 (1998).Google Scholar
18 Oelfrug, D., Tompert, A., Gierschner, J., Egelhaaf, H., Hanack, M., Hohloch, M., and Steinhuber, E., J. Chem. Phys., B102,1902 (1998).Google Scholar
19 Hong, Z.Y., Wang, D. K., Ma, D. G., Zhao, X. J., Jing, X. B., and Wang, F. S., Synth. Met. 91, 321 (1997).Google Scholar
20 Birks, J. B., Photophysics of Aromatic Molecules (Wiley Interscience, London, 1970).Google Scholar
21 Handbook of Conducting Polymers, edited by Skotheim, T.A. (Marcel Dekker, New York and Basel, 1986).Google Scholar
22 Garbuzov, D. Z., Bulovic, V., Burrows, P.E., and Forrest, S. R., Chem. Phys. Lett., 249, 433 (1996).Google Scholar
23 Fujii, A., Zakhidov, A., Borovkov, V., Ohmori, Y., and Yoshino, K., Jpn. J. Appl. Phys., 35, L1438 (1996).Google Scholar
24 Sun, R.G., Wang, Y. Z., Zhou, X. M., Fahlman, M., Zheng, Q.B., Kobayashi, T., Masuda, T., and Epstein, A. J., Proc. of SPIE 3476, 332 (1998).Google Scholar
25 Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett., 51, 913 (1987).Google Scholar