Skip to main content Accessibility help
×
Home

Excitons in Low-Dimensional Systems: Conjugated Polymers and Semiconductor Surfaces

  • Michael Rohlfing (a1)

Abstract

We investigate the formation of excitons in low-dimensional semiconducting systems. To this end a recently developed ab initio approach is employed to determine the excitation energies and optical transition matrix elements of bound and unbound excitonic states. From these results the optical spectrum can be evaluated. We discuss two classes of low- dimensional prototype materials: conjugated polymers and a semiconductor surface. Due to the reduced dimensionality, the excitonic binding energies are much larger than in con- ventional semiconductors.

Copyright

References

Hide All
[1] Greenham, N. C. and Friend, R. H., in Solid State Physics, Advances in Research and Application, edited by Ehrenreich, H. and Spaepen, F., (Academic, New York, 1995), vol. 49, p. 1; A. J. Heeger et al., Rev. Mod. Phys. 60, 781 (1988).
[2] Northrup, J. E., Hybertsen, M. S., and Louie, S. G., Phys. Rev. Lett. 66, 500 (1991); L. Reining and R. Del Sole, Phys. Rev. Lett. 67, 3816 (1991).
[3] Onida, G. et al. , Phys. Rev. Lett. 75, 818 (1995); S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev. Lett. 80, 4510 (1998).
[4] Benedict, L. X., Shirley, E. L., and Bohn, R. B., Phys. Rev. Lett. 80, 4514 (1998).
[5] Rohlfing, M. and Louie, S. G., Phys. Rev. Lett. 81, 2312 (1998); ibid. 82, 1959 (1999); ibid. 83, 856 (1999).
[6] Kohn, W. and Sham, L., Phys. Rev. 140, A1133 (1965).
[7] Hedin, L., Phys. Rev. 139, A796 (1965); L. Hedin and S. Lundqvist, in Solid State Physics, Advances in Research and Application, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York, 1969), Vol. 23, p. 1;
[8] Hybertsen, M. S. and Louie, S. G., Phys. Rev. Lett. 55, 1418 (1985); R. W. Godby, M. Schliiter, and L. J. Sham, Phys. Rev. Lett. 56, 2415 (1986); M. Rohlfing, P. Kriiger, and J. Pollmann, Phys. Rev. B 48, 17 791 (1993).
[9] Sham, L. J. and Rice, T. M., Phys. Rev. 144, 708 (1966); W. Hanke and L. J. Sham, Phys. Rev. Lett. 43, 387 (1979); G. Strinati, Phys. Rev. Lett. 49, 1519 (1982); Rivista del Nouvo Cimento 11, 1 (1988).
[10] Rohlfing, M. and Louie, S. G., in preparation.
[11] Bachelet, G. B., Hamann, D. R., and Schliiter, M., Phys. Rev. B 26, 4199 (1982).
[12] Rohlfing, M., Kriiger, P., and Pollmann, J., Phys. Rev. B 52, 1905 (1995).
[13] Yannoni, C. S. and Clarke, T. C., Phys. Rev. Lett. 51, 1191 (1983); G. Leising, Phys. Rev. B 38, 10 313 (1988); C. H. Choi, M. Kertesz, and A. Karpfen, J. Chem. Phys. 107, 6712 (1997); E. C. Ethridge, J. L. Fry, and M. Zaider, Phys. Rev. B 53, 3662 (1996).
[14] Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure, Vol. IV: Constants of Diatomic Molecules (Van Nostrand, New York 1979).
[15] Tian, B. et al. , J. Chem. Phys. 95, 3191 (1991); K. Pichler et al., J. Phys. Cond. Matter 5, 7155 (1993); D. A. Halladay et al., Synthetic Metals 55-57, 954 (1993); S. F. Alvarado et al., Phys. Rev. Lett. 81, 1082 (1998); S. Mukamel et al., Science 277, 781 (1997).
[16] Osterbacka, R. et al. , private communication.
[17] Pandey, K. C., Phys. Rev. Lett. 49, 223 (1982).
[18] Uhrberg, R. I. G., Hansson, G. V., Nicholls, J. M., and Flodström, S. A., Phys. Rev. Lett. 48, 1032 (1982); P. Perfetti, J. M. Nicholls, and B. Reihl, Phys. Rev. B 36, 6160 (1987).
[19] Chiaradia, P., Cricenti, A., Selci, S., and Chiarotti, G., Phys. Rev. Lett. 52, 1145 (1984).
[20] Selci, S. et al. , J. Vac. Sci. Technol. A 5, 327 (1987);
[21] Ciccacci, F., Selci, S., Chiarotti, G., and Chiaradia, P., Phys. Rev. Lett. 56, 2411 (1986).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed