Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T19:32:13.108Z Has data issue: false hasContentIssue false

Exciton Diamagnetic Shifts and Magnetic Field Dependent Linewidths in Ordered and Disordered InGaP Alloys

Published online by Cambridge University Press:  21 March 2011

E. D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
K. K. Bajaj
Affiliation:
Physics Department, Emory University, Atlanta, Georgia 30322
G. Coli
Affiliation:
Physics Department, Emory University, Atlanta, Georgia 30322
S. A. Crooker
Affiliation:
National High Magnetic Field Laboratory - Los Alamos National Laboratory Los Alamos, New Mexico 87545
Yong Zhang
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
J. M. Olsen
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Get access

Abstract

We have measured the diamagnetic shifts and photoluminescence linewidths of excitonic transitions in ordered and disordered In0.48 Ga0.52 P alloys, lattice matched to GaAs, in pulsed magnetic fields at 4 and 76K. The pulsed magnetic field ranged between 0 and 50T. The variations diamagnetic shifts with magnetic field in disordered and weakly ordered samples are considerably smaller than those calculated using a free exciton model. For a given magnetic field, the value of the diamagnetic shifts are found to increase with increasing order parameter. Furthermore, for all samples, the diamagnetic shifts at 76K are larger than at 4K suggesting that the excitons are strongly localized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zunger, A. and Mahakan, S., “Atomic Ordering and Phase Separation in Epitaxial III–V Alloys, Handbook on Semiconductors, edited by Moss, T.S., Volume 3, edited by S. Mahajan (Elsevier Science, 1994), pp. 13991514.Google Scholar
2. Goede, O., John, L., and Hennig, D. H., Phys. Status Solidi B 89, K183 (1978).Google Scholar
3. Singh, J. and Bajaj, K. K., Appl. Phys. Lett. 44, 1075 (1984).Google Scholar
4. Schubert, E. F., Gobel, E. O., Horikoshi, Y., Ploog, K., and Queisser, H. J., Phys. Rev B30, 813 (1984).Google Scholar
5. Singh, J. and Bajaj, K. K., Appl. Phys. Lett. 48, 1077 (1986).Google Scholar
6. Zimmerman, J., J. Crystal Growth 101, 346 (1990).Google Scholar
7. Lee, S. M. and Bajaj, K. K., J. Appl. Phys. 73, 1788 (1993).Google Scholar
8. Lyo, S. K., Phys Rev. B48, 2152 (1993).Google Scholar
9. Raikh, M. E. and Éfros, A. L., Fiz. Tverd. Tela (Leningrad) 26, 106 (1984) [ Sov. Phys. Solid State 26, 61 (1984)].Google Scholar
10. Zhang, Y., Mascarenhas, A., Smith, S., Geisz, J.F., Olsen, J.M., and Hanna, M., Phys. Rev. B61, 9910 (2000).Google Scholar
11. Jones, E. D., Schneider, R. P., Lee, S. M., and Bajaj, K. K., Phys. Rev B46, 7225 (1992).Google Scholar
12. Zeman, J., Martinez, G., Bajaj, K. K., Krivorotov, I., and Uchida, K., Appl. Phys. Lett. 77, 4335 (2000).Google Scholar
13. Mena, R. A., Sanders, G. D, Bajaj, K. K., and Dudley, S. C., J. Appl. Phys. 70, 1866 (1991).Google Scholar