Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T19:43:22.639Z Has data issue: false hasContentIssue false

Exciton and Defect Photoluminescence Signatures in Single Crystal Rubrene

Published online by Cambridge University Press:  26 February 2011

Oleg Mitrofanov
Affiliation:
olegm@lucent.com, Bell Labs, Lucent Technologies, Device Physics, 600 Mountain Ave, Murray Hill, NJ, 07974, United States
David V Lang
Affiliation:
dvl@lucent.com, Columbia University, New York, NY, 10027, United States
Christian Kloc
Affiliation:
kloc@lucent.com, Bell Labs, Lucent Technologies, Device Physics, 600 Mountain Ave, Murray Hill, NJ, 07974, United States
Theo Siegrist
Affiliation:
tsi@lucent.com, Bell Labs, Lucent Technologies, Device Physics, 600 Mountain Ave, Murray Hill, NJ, 07974, United States
Woo-Young So
Affiliation:
wso@lucent.com, Columbia University, New York, NY, 10027, United States
Michael A Sergent
Affiliation:
msergent@lucent.com, Bell Labs, Lucent Technologies, Device Physics, 600 Mountain Ave, Murray Hill, NJ, 07974, United States
Arthur P Ramirez
Affiliation:
apr@lucent.com, Bell Labs, Lucent Technologies, Device Physics, 600 Mountain Ave, Murray Hill, NJ, 07974, United States
Get access

Abstract

Radiative recombination processes provide valuable information about exciton dynamics and allow detection of defects in rubrene crystals. We demonstrate that the photoluminescence spectra of crystalline rubrene reflect exciton dissociation through oxygen-related defects in addition to the direct exciton recombination. The defect-assisted exciton dissociation results in a well-defined photoluminescence band. These defects play an important role in charge transport. Dark- and photo-conductivity is higher in rubrene crystals with a large density of the defects. The observations strongly suggest that the oxygen-related defect forms a bandgap state and acts as an acceptor center in crystalline rubrene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, D.V., Chi, X., Siegrist, T., Sergent, A. M., and Ramirez, A. P., Phys. Rev. Lett. 93, 086802 (2004).Google Scholar
2. Goldmann, C., Krellner, C., Pernstich, K. P., Haas, S., Gundlach, D. J., and Batlogg, B., J. Appl. Phys. 99, 034507 (2006).Google Scholar
3. Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A., and Gershenson, M. E., Phys. Rev. Lett. 93, 086602 (2004).Google Scholar
4. Podzorov, V., Menard, E., Rogers, J. A., and Gershenson, M. E., Phys. Rev. Lett. 95, 226601 (2005).Google Scholar
5. Najafov, H., Biaggio, I., Podzorov, V., Calhoun, M. F., and Gershenson, M. E., Phys. Rev. Lett. 96, 056604 (2006).Google Scholar
6. Podzorov, V., Pudalov, V.M., and Gershenson, M. E., Appl. Phys. Lett. 85, 6039 (2004).Google Scholar
7. Takahashi, T., Takenobu, T., Takeya, J., and Iwasa, Y., Appl. Phys. Lett. 88, 033505 (2006).Google Scholar
8. Kafer, D. and Witte, G., Physical Chemistry Chemical Physics, 7, 2850 (2005).Google Scholar
9. Mitrofanov, O., Lang, D.V., Kloc, C., Wikberg, M.J., Siegrist, T., So, W.-Y., Sergent, M.A., Ramirez, A.P., Phys. Rev. Lett. 97, 166601 (2006).Google Scholar
10. Hummer, K. and Ambrosch-Draxl, C., Phys. Rev. B 71, 081202(R) (2005).Google Scholar