No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The luminescence properties of silicon nanoparticles have been studied as a function of the excitation light intensity, the temporal Nature of the excitation source, and of sample temperature. The excitation intensity dependence of the luminescence was found to depend strongly on the temporal Nature of the excitation source. Under high intensity excitation from a pulsed 355 nm source, the photoluminescence (PL) intensity saturates and the peak PL wavelength shifts to the blue at room temperature. This behavior persists at reduced temperature. In contrast, under high intensity excitation using a cw 488 nm source at room temperature, the PL intensity saturates but does not shift in wavelength. At reduced temperatures, there is no saturation of luminescence intensity with high intensity cw excitation. These differences indicate that photogenerated carrier recombination occurs via different pathways depending on the temporal profile of the excitation, with cw excited samples following the expected Auger pathway while pulsed samples exhibit a state filling mechanism. Auger models for the pulsed behavior are found to be inconsistent with the experimental data. The temperature dependence of the PL from a pulsed excited sample for a constant excitation intensity was also monitored. The variation of the peak emission wavelength was found to be similar in magnitude to that observed for amorphous silicon, suggesting that structural disorder may play a role in the luminescence. The change in emission intensity was fairly weak, indicating enhanced carrier confinement, as would be expected in a quantum confined system.