Skip to main content Accessibility help
×
Home

Excitation Intensity and Temperature Dependent Photoluminescence Behavior of Silicon Nanoparticles

  • E. Werwa (a1), A. A. Seraphin (a1) and K. D. Kolenbrander (a1)

Abstract

The luminescence properties of silicon nanoparticles have been studied as a function of the excitation light intensity, the temporal Nature of the excitation source, and of sample temperature. The excitation intensity dependence of the luminescence was found to depend strongly on the temporal Nature of the excitation source. Under high intensity excitation from a pulsed 355 nm source, the photoluminescence (PL) intensity saturates and the peak PL wavelength shifts to the blue at room temperature. This behavior persists at reduced temperature. In contrast, under high intensity excitation using a cw 488 nm source at room temperature, the PL intensity saturates but does not shift in wavelength. At reduced temperatures, there is no saturation of luminescence intensity with high intensity cw excitation. These differences indicate that photogenerated carrier recombination occurs via different pathways depending on the temporal profile of the excitation, with cw excited samples following the expected Auger pathway while pulsed samples exhibit a state filling mechanism. Auger models for the pulsed behavior are found to be inconsistent with the experimental data. The temperature dependence of the PL from a pulsed excited sample for a constant excitation intensity was also monitored. The variation of the peak emission wavelength was found to be similar in magnitude to that observed for amorphous silicon, suggesting that structural disorder may play a role in the luminescence. The change in emission intensity was fairly weak, indicating enhanced carrier confinement, as would be expected in a quantum confined system.

Copyright

References

Hide All
1. Canham, L.T., Appl. Phys. Lett. 57, 10461048 (1990).
2. Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).
3. Fauchet, P.M., Ettedgui, E., Raisanen, A., Brillson, L.J., Seiferth, F., Kurinec, S.K., Gao, Y., Peng, C., and Tsybeskov, L. in Silicon-Based Optoelectronic Materials, edited by Collins, R.T., Tischler, M.A., Abstreiter, G., and Thewalt, M.L. (Mater. Res. Soc. Proc. 298, Pittsburgh, PA, 1993) pp. 271276.
4. Cullis, A.G. and Canham, L.T., Nature 353, 335338 (1991).
5. Werwa, E., Seraphin, A.A., Chiu, L.A., Zhou, C., and Kolenbrander, K.D., Appl. Phys. Lett. 64 1821 (1994).
6. Mihalcescu, I., Vial, J.C., Bsiesy, A., Muller, F., Romestain, R., Martin, E., Delerue, C., Lannoo, M., and Allan, G., Phys. Rev. B 51, 17605 (1995).
7. Koos, M., Pocsik, I., and Vazsonyi, E.B., Appl. Phys. Lett. 62, 1797 (1993).
8. Delerue, C., Lannoo, M., Allan, G., Martin, E., Mihalcescu, I., Vial, J.C., Romestain, R., Muller, F., and Bsiesy, A., Phys. Rev. Lett. 75, 2228 (1995).
9. Schmitt-Rink, S., Miller, D.A.B., and Chemia, D.S., Phys. Rev. B 35, 8113 (1987).
10. Brus, L.E., J. Chem. Phys. 80, 4403 (1984).
11. Fafard, S., Leon, R., Leonard, D., Merz, J.L., and Petroff, P.M., Phys. Rev. B 52, 5752 (1995).
12. Fafard, S., Wasilweski, Z., McCaffrey, J., Raymond, S., and Charbonneau, S., Appl. Phys. Lett. 68, 991 (1996).
13. Hessman, D., Castrillo, P., Pistol, M.-E., Pryor, C., and Samuelson, L., Appl. Phys. Lett. 69, 749 (1996).
14. Sopanen, M., Taskinen, M., Lipsanen, H., and Ahopelto, J., Appl. Phys. Lett. 69, 3393 (1996).
15. Ekimov, A.I., Hache, F., Schanne-Klein, M.C., Richard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Rodina, A.V., Efros, Al.L., J. Opt. Soc. Am. B 10, 100 (1993).
16. Guha, S., Hendershot, G., Peebles, D., Steiner, P., Kozlowski, F., and Lang, W., Appl. Phys. Lett. 64, 613 (1994).
17. Beattie, A.R. and Landsberg, P.T., Proc. Royal Soc. London 249, 16 (1959).
18. Koyama, H., Ozaki, T., and Koshida, N., Phys. Rev. B 52, R11561 (1995).
19. Kanemitsu, Y., Phys. Rev. B. 49, 16845 (1994).
20. Ookubo, N., Hamada, N., and Sawada, S., Sol. St. Comm. 92, 369 (1994).
21. Nash, K.J., Calcott, P.D.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Lumin. 60&61, 297 (1994).
22. 't Hooft, G.W., Kessener, Y.A.R.R., Rikken, G.L.J.A., and Venhuizen, A.H.J., Appl. Phys. Lett. 61, 234 (1992).
23. Finkbeiner, S. and Weber, J., Thin Solid Films 255, 254 (1995).
24. Takagahara, T. and Takeda, K., Phys. Rev. B. 46, 15578 (1992).
25. Eychmüller, A., Hasselbarth, A., Katskias, L., and Weiler, H., J. Lumin. 48&49, 745 (1991).
26. Street, R.A., Adv. Phys. 30, 593 (1981).
27. Lockwood, D.J., Lu, Z.H., and Baribeau, J.M., Phys. Rev. Lett. 76, 539 (1996).
28. Kanemitsu, Y., Phys. Rev. B 53, 13515 (1996).

Excitation Intensity and Temperature Dependent Photoluminescence Behavior of Silicon Nanoparticles

  • E. Werwa (a1), A. A. Seraphin (a1) and K. D. Kolenbrander (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed