Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:04:49.214Z Has data issue: false hasContentIssue false

Excimer Laser Liftoff of Epitaxial Pb(Zr,Ti)O3 Thin Films and Heterostructures

Published online by Cambridge University Press:  10 February 2011

L. Tsakalakos
Affiliation:
Department of Materials Science & Mineral EngineeringUniversity of California, Berkeley, CA 94720–1760
T. Sands
Affiliation:
Department of Materials Science & Mineral EngineeringUniversity of California, Berkeley, CA 94720–1760
Get access

Abstract

Epitaxial (100) and (111)-oriented Pb(Zr,Ti)O3-based thin films and heterostructures have been transferred intact from their sapphire and MgO growth substrates to silicon and polymer substrates utilizing a novel laser liftoff process. The heterostructures, while on their growth substrate, were bonded to the receptor substrates using one of several bonding methods, including van der Waals bonding to an elastomer receptor, and transient liquid-phase Pd-In bonding to Si. A single 38 ns pulse from a KrF excimer laser (<,= 248 nm) directed through the transparent growth substrate induced localized heating of the perovskite interfacial layer. At fluences corresponding to the onset of vaporization (>300 mJ/cm2), the sapphire or MgO substrate was detached. Because of the short pulse length and the low thermal conductivity of Pb-based perovskite phases, heating of the top surface of the heterostructure was minimal, thus permitting film transfer to thermally-sensitive receptor substrates. X-ray rocking curves revealed slight broadening of the principal PLZT diffraction peaks (∼10–20%), suggesting local relaxation of film stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Venkatesan, T.,. “Laser deposited high Tc superconducting thin films,”. Sol. State Tech. 30, p. 39 (1987).Google Scholar
2 Wellstood, F. C., Kingston, J. J., Ferrari, M. J., and Clarke, J., “Superconducting thin-film flux transformers of Yba2 Cu3O7−x,” Appl. Phys. Lett. 57, p. 1930 (1990).Google Scholar
3 Jin, S., McCormack, M., Tiefel, T. H., and Ramesh, R., “Colossal magnetoresistance in La-Ca-Mn-O thin films,” J. Appl. Phys. 76, p. 6929 (1994).Google Scholar
4 Ramesh, R., Inam, A., Chan, W. K., Tillerot, F., Wilkens, B., Chang, C. C., Sands, T., Tarascon, J. M., and Keramidas, V. G., “Ferroelectric Pb(Zro2Tio8)O3 thin films on epitaxial Y-Ba-Cu-O,” Appl. Phys. Lett. 59, p. 3542 (1991).Google Scholar
5 Park, S. E. and Shrout, T. R., “Ultrahigh strain and piezoelectric behavior in relaxor-based ferroelectric single crystals,” J. Appl. Phys. 82, p. 1804 (1997).Google Scholar
6 Ramesh, R., Lee, J., Sands, T., Keramidas, V. G., and Auciello, O., “Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on (001) Pt/SiO2/Si substrates using bismuth titanate template layer,” Appl. Phys. Lett. 64, p. 2511 (1994).Google Scholar
7 Eddy, M. M., Hanson, R., Rao, M. R., Zuck, B., Speck, J. S., and Tarsa, E. J., “Oxide epitaxial lift-off,” Mat. Res. Soc. Symp. Proc. 474, p. 365 (1997).Google Scholar
8 Levy, M., Osgood, R. M. Jr, Kumar, A., and Bakhru, H., “Epitaxial Lift-Off of thin oxide layers: yttrium iron garnets onto GaAs,” Appl. Phys. Lett. 71, p. 2617 (1997).Google Scholar
9 Levy, M., Osgood, R. M. Jr, Liu, R., Cross, L. E., IIICargill, G. S., Kumar, A., and Bakhru, H., “Fabrication of single crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73, p. 2293 (1998).Google Scholar
10 Kelly, M. K., Ambacher, O., Dimitrov, R., Handschuh, R., and Stutzmann, M., “Optical process for liftoff of group III-nitride films,” Phys. Stat. Sol. A 159, p. R3 (1997).Google Scholar
11 Wong, W. S., Sands, T., and Cheung, N. W., “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72, p. 599 (1998).Google Scholar
12 Wong, W. S., KrOger, J., Cho, Y., Weber, E. R., Sands, T., Yu, K. M., Wengrow, A. B., and Cheung, N. W., “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser liftoff,”,” Appl. Phys. Lett. 75, p. 1887 (1999).Google Scholar
13 Wong, W. S., Wengrow, A. B., Cho, Y., Salleo, A., Quitoriano, N. J., Cheung, N. W. and Sands, T., “Integration of GaN Thin Films with Dissimilar Substrate Materials by Pd-In Metal Bonding and Laser Liftoff,” J. Electron. Mater. 28, p. 1409 (1999).Google Scholar
14 Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford University Press, 1959, p. 88.Google Scholar
15 Robertson, J. and Warren, W. L., “Energy levels of point defects in perovskite oxides,” Mat. Res. Soc. Symp. Proc. 361, p. 123 (1995).Google Scholar
16 Tsakalakos, L. and Sands, T., “Epitaxial ferroelectric (Pb, La)(ZrTi)O3 thin films on stainless steel by excimer laser liftoff,” Appl. Phys. Lett. tentative publication date: 10 January 2000.Google Scholar