Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T20:52:03.071Z Has data issue: false hasContentIssue false

Excimer Laser Crystallization of Amorphous Silicon Films for Poly-Si TFT Fabrication

Published online by Cambridge University Press:  15 February 2011

Hiroshi Tanabe
Affiliation:
Functional Devices Research Laboratories, Nec Corporation, 4–1–1 Miyazaki Miyamae-Ku Kawasaki 216, Japan
Kenji Sera
Affiliation:
Functional Devices Research Laboratories, Nec Corporation, 4–1–1 Miyazaki Miyamae-Ku Kawasaki 216, Japan
Ken-Ichi Nakamura
Affiliation:
Functional Devices Research Laboratories, Nec Corporation, 4–1–1 Miyazaki Miyamae-Ku Kawasaki 216, Japan
Kazumi Hirata
Affiliation:
Functional Devices Research Laboratories, Nec Corporation, 4–1–1 Miyazaki Miyamae-Ku Kawasaki 216, Japan
Katsuhisa Yuda
Affiliation:
Functional Devices Research Laboratories, Nec Corporation, 4–1–1 Miyazaki Miyamae-Ku Kawasaki 216, Japan
Fujio Okumura
Affiliation:
Functional Devices Research Laboratories, Nec Corporation, 4–1–1 Miyazaki Miyamae-Ku Kawasaki 216, Japan
Get access

Abstract

Excimer laser crystallized silicon films have been studied as a function of the number of laser shots, and the influence of the use of such polycrystalline films in thin film transistors (TFTs) has also been investigated. It is found that electron Mobility, one of the most important of all TFT characteristics, increases monotonically with the number of irradiations, with maximum mobility being obtained at about 20 shots. This result is not due to grain size, since transmission electron microscopy indicates that the number of laser shots does not affect grain size in polycrystalline silicon films. Raman studies and TFT carrier transport analysis, on the other hand, suggest that this increase in electron mobility may be explained by the decrease in grain boundary defects and defects inside grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takafuji, Y., Yamashita, T., Shimada, T., Akebi, Y., Matsumoto, T., Tsubota, K., Fujioka, K. and Awane, K., SID 93 Digest of Technical Papers, 383 (1993)Google Scholar
2. Ohshima, H., Hashizume, T., Matsuo, M., Inoue, S. and Nakazawa, T., SID 93 Digest of Technical Papers, 387 (1993)Google Scholar
3. Haws, S.A., Fluxman, S. and Rundle, P., SID 93 Digest of Technical Papers, 895 (1993)Google Scholar
4. Sera, K., Asada, H., Okumura, F., Tanabe, H., Nakamura, K., Sekine, H., Fujieda, I., Tujumura, S. and Kaneko, S., SID 93 Digest of Technical Papers, 356 (1993)Google Scholar
5. Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S. and Hotta, K., IEEE Trans. Electron Devices, 36, 2868 (1989)Google Scholar
6. Sameshima, T., Hara, M. and Usui, S., Jpn. J. Appl. Phys. 28, 1789 (1989)Google Scholar
7. Bachrach, R.Z., Winer, K., Boyce, J.B., Ready, S.E., Johnson, R.I. and Anderson, G.B., J. Electron. Materials 19, 241 (1990)Google Scholar
8. Im, J.S., Kim, H.J. and Thompson, M.O., Appl. Phys. Lett. 63, 1969 (1993)Google Scholar
9. Johnson, R.I., Anderson, G.B., Ready, S.E. and Boyce, J.B., Mat. Res. Soc. Proc. 219, 407 (1991)Google Scholar
10. Proano, R.E., Misage, R.S. and Ast, D.G., IEEE Trans. Electron Devices, 36, 1915 (1989)Google Scholar
11. Tsu, R., Izu, M., Ovshinsky, S.R. and Poliak, F.H., Solid State Communs., 36, 817 (1980)Google Scholar
12. Nakashima, S., Oima, S., Mitsuishi, A., Nishimura, T., Fukumoto, T. and Akasaka, Y., Solid State Communs., 40, 765 (1981)Google Scholar
13. Iqbal, Z. and Veprek, S., J. Phys. C;Solid State Phys., 15, 377 (1982)Google Scholar
14. Cheong, Y.M., Marcus, H.L. and Adar, F., J. Mater. Res., 2, 902 (1987)Google Scholar
15. Nakashima, S. and Hangyo, M., IEEE J. Quantum Electronics, 25, 965 (1989)Google Scholar