Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T13:42:42.325Z Has data issue: false hasContentIssue false

Excimer Lasbr Induced Crystallization of thin Amorphous Si Films on SiO2: Implications of Crystallized Microstructures for Phase Transformation Mechanisms

Published online by Cambridge University Press:  28 February 2011

H. J. Kim
Affiliation:
Columbia University, HKSM, Metallurgy & Materials Science, New York, NY
James S. Im
Affiliation:
Columbia University, HKSM, Metallurgy & Materials Science, New York, NY
Michael O. Thompson
Affiliation:
Cornell University, Dept. of Materials Science & Engineering, Ithaca, NY
Get access

Abstract

Using planar view transmission electron microscope (TEM) and transient reflectance (TR) analyses, we have investigated the excimer laser crystallization of amorphous silicon (a-Si) films on SiO2. Emphasis was placed on characterizing the microstructures of the single-shot irradiated materials, as a function of the energy density of the laser pulse and the temperature of the substrate. The dependence of the grain size and melt duration as a function of energy density revealed two major crystallization regimes. In the low energy density regime, the average grain size first increases gradually with increases in the laser energy density. In the high energy density regime, on the other hand, a very fine grained microstructure, which is relatively insensitive to variations in the laser energy density, is obtained. In addition, we have discovered that at the transition between these two regimes an extremely small experimental window exists, within which an exceedingly large grain-sized polycrystalline film is obtained. We suggest a liquid phase growth model for this phenomenon, which is based on the regrowth of crystals from the residual solid islands at the oxide interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bachrach, R. Z., Winer, K., Winer, J. B., Ponce, F. A., Ready, S. E., Johnson, R. and Anderson, G. B., Mat. Res. Soc. Symp. Proc. 157. 467 (1990).Google Scholar
2. Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I. and Anderson, G. B.. J. Elect. Materials 19. 241 (1990).Google Scholar
3. Sameshima, T. and Usui, S., Appl. Phys. Lett. 59. 2724 (1991).Google Scholar
4. Sameshima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 235, 89 (1992).Google Scholar
5. Cullis, A G., Chew, N. G., Webber, H. C. and Smith, D. J., J. Cryst. Growth 68 624 (1984).Google Scholar
6. Lowndes, D. H., Wood, R. F. and J. Narayan, Phys. Rev. Lett. 52, 561 (1984).Google Scholar
7. Lowndes, D. H., Pennycook, S. J., Wood, R. F., Jellison, J. G. E. and Withrow, S. P., Mat. Res. Soc. Symp. Proc. 100, 489 (1988).Google Scholar
8. Sinke, W. and Saris, F. W., Phys. Rev. Lett. 53, 2121 (1984).Google Scholar
9. Thompson, M. O., Mayer, J. W., Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M. and Jacobson, D. C., Phys. Rev. Lett. 50 896 (1983).Google Scholar
10. Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S.. Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
11. Stiffler, S. R., Thompson, M. O. and Peercy, P. S., Mat. Res. Soc. Symp. Proc. 100. 505 (1988).Google Scholar
12. Stiffler, S. R. and Thompson, M. O., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar
13. Stiffler, S. R., Thompson, M. O. and Peercy, P. S., Phys. Rev. 43 9851 (1991).Google Scholar
14. Stiffler, S. R., Evans, P. V. and Greer, A. L., Acta Metall. Mater. 40, 1617 (1992).Google Scholar
15. Im, , James, S., Kim, H. J., and Thompson, Michael O., to be submitted.Google Scholar