Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T01:06:40.593Z Has data issue: false hasContentIssue false

EXAFS Studies on Nanocrystalline Materials with Doped Grain Boundaries

Published online by Cambridge University Press:  15 February 2011

F. Boscherini
Affiliation:
INFN, Laboratori Nazionali di Frascati, P.O. Box 13, 000 44 Frascati (Roma), Italy.
T. Haubold
Affiliation:
Universität des Saarlandes, FB 15, Werkstoffwissenschaften, Gebäude 43, 6600 Saarbrücken, Germany.
S. Pascarelli
Affiliation:
INFN, Laboratori Nazionali di Frascati, P.O. Box 13, 000 44 Frascati (Roma), Italy.
S. Mobilio
Affiliation:
INFN, Laboratori Nazionali di Frascati, P.O. Box 13, 000 44 Frascati (Roma), Italy. Dipartimento di Energetica, Università dell'Aquila, Roio Monteluco, L'Aquila, Italy.
H. Gleiter
Affiliation:
Universität des Saarlandes, FB 15, Werkstoffwissenschaften, Gebäude 43, 6600 Saarbrücken, Germany.
Get access

Abstract

We present an EXAFS study of the local environment of Co dopant atoms in nanocrystalline Cu. Due to the low solubility of Co atoms in bulk Cu, these measurements yield information on the local atomic structure of grain boundaries in nanocrystalline Cu. Previous EXAFS studies on pure nanocrystalline metals have indicated an atomic arrangement in the grain boundary component exhibiting a broad distribution of interatomic spacings which differs from the atomic structure of the crystalline or glassy state. In the present investigation a significantly reduced coordination number around Co is found; also, the first shell bond length varies with dopant concentration from that typical of Co substitutional impurities in Cu to that of bulk Co. These results suggest that Co atoms substitute Cu atoms both in the disordered grain boundaries and in the lattice of the Cucrystallites and/or form Co-precipitates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gleiter, H., Progess Mat. Sci. 33, 223 (1989).Google Scholar
[2] Birringer, R., Mat. Sci. & Eng. A 117, 33 (1989).Google Scholar
[3] Haubold, T., Birringer, R., Lengeler, B. and Gleiter, H., Phys. Lett. A135, 461 (1989).Google Scholar
[4] Haubold, T., Krauss, W. and Gleiter, H., Phil. Mag. Lett., 63 245 (1991).Google Scholar
[5] Hansen, H. and Anderko, K., Constitution of Binary Alloys (Mc Graw Hill, New York, 1965).Google Scholar
[6] Lengeler, B. and Eisenberger, R., Phys. Rev. B21, 4507 (1980).Google Scholar
[7] Kale, A.G. Mc, Veal, B.W., Paulikas, A.P., Chan, S.K. and Knapp, G.S., J. of Amer. Chem. Soc. 110, 3763 (1988).Google Scholar
[8] Scheuer, U. and Lengeler, B., Phys. Rev. B44, 9883 (1991).Google Scholar
[9] Wunderlich, W., Ishida, Y., Maurer, R., Scripta Met 24, 403 (1990).Google Scholar
[10] Fitzsimmons, M.R., Eastman, J.A., Müller-Stach, M. and Wallner, G., Phys. Rev. B44, 1452 (1991).Google Scholar
[11] Herr, U., Jing, J., Gonser, U. and Gleiter, H., Sol. State Com. 76, 197 (1990).Google Scholar
[12] Haubold, T., submitted to Acta Met. et Mater.Google Scholar
[13] Haubold, T., Pascarelli, S., Boscherini, F., Mobilio, S., and Gleiter, H., Phil. Mag. in press.Google Scholar