Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-26T19:53:24.942Z Has data issue: false hasContentIssue false

Evolution of Semiconductor Thin Film and Surface Microstructure During Ion Bombardment

Published online by Cambridge University Press:  25 February 2011

H. A. Atwater*
Affiliation:
Thomas J. Watson Laboratory of Applied Physics California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Defects created by ion irradiation can enable new modes of microstructural development at interfaces and surfaces in semiconductor thin films. Two examples are described. First, novel kinetic paths for microstructural evolution via MeV ion beam modification of amorphous-crystal interface motion in Si are discussed. At intermediate temperatures, amorphous layer formation is initiated at interfaces such as surfaces and grain boundaries in polycrystalline Si. Irradiation at higher temperatures during the early stages of Si crystallization leads to a significant enhancement of the crystal nucleation rate, while nearly complete suppression of crystal nucleation during crystal growth can be achieved by a cyclic irradiation-induced amorphization and thermal growth process. Second, a new development in misfit strain accommodation in epitaxial semiconductor films is described in which ion-induced injection of point defect complexes can produce coherent, uniformly strained epitaxial thin films. Measurement of strain in epitaxial films can be used to distinguish between surface and sub-surface atomic displacements generated by a low energy ion beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Morehead, F. and Crowder, B.L., Rad. Effects, 6, 27 (1970).Google Scholar
[2] Elliman, R.G., Linnros, J., and Brown, W.L., Mat. Res. Soc. Symp. 100, 363 (1988);Google Scholar
Brown, W.L., Elliman, R.G., Knoell, R.V., Leiberich, A., Linnros, J., Maher, D.M., and Williams, J.S., in Microscopy of Semiconductor Materials, ed. by Cullis, A.G., (Institute of Physics, London, 1987), p. 61.Google Scholar
]3] Linnros, J., Elliman, R.G., and Brown, W.L., J. Mater. Research, 3 1209 (1988).Google Scholar
[4] Jackson, K.A., J. Mater. Res., 3, 1218 (1988).Google Scholar
[5] Atwater, H.A. and Brown, W.L., Appl. Phys. Lett., 56, 30 (1990).Google Scholar
[6] Battaglia, A., Priolo, F., Rimini, E., and Ferla, G., Appl. Phys. Lett., 57, 768 (1990).Google Scholar
[7] Priolo, F., Spinella, C., and Rimini, E., Phys. Rev. B41, 5235 (1990).Google Scholar
[8] Im, J.S. and Atwater, H.A., Appl. Phys. Lett., 57, 1766 (1990);Google Scholar
Im, J.S. and Atwater, H.A., Mat. Res. Soc. Symp. Proc. Vol. (1990).Google Scholar
[9] Spinella, C., Lombardo, S., Priolo, F. and Campisano, S. U., presented at the 1990 Materials Research Society Fall Meeting, Boston, MA; Mat. Res. Soc. Symp. Proc, to be published.Google Scholar
[10] Wetzel, J.T., Levi, A.A., and Smith, D.A., in Grain Boundary Structure and Related Phenomena, edited by Ishida, Y., Japan Institute of Metals International Symposium, Vol. 4, (Japan Institute of Metals, Miyagi, 1986) pp. 10611067.Google Scholar
[11] Kohyama, M., Yamamoto, R., and Doyama, M., in Grain Boundary Structure and Related Phenomena, edited by Ishida, Y., Japan Institute of Metals International Symposium, Vol. 4, (Japan Institute of Metals, Miyagi, 1986) pp. 99106.Google Scholar
[12] Read, W.T. and Shockley, W., Phys. Rev., 75, 692 (1949).Google Scholar
[13] Roorda, S., Doom, S., Sinke, W.C., Scholte, P.M.L.O., and van Loenen, E., Phys. Rev. Lett., 62 18808 (1989).Google Scholar
[14] Kusukawa, K., Moniwa, M., Ohkura, M. and Takeda, E., Appl. Phys. Lett. 56 560 (1990).Google Scholar
[15] Dan, T., Ishiwara, H., and Furukawa, S., Appl. Phys. Lett. 53, 2626 (1988).Google Scholar
[16] Ishiwara, H., Tomita, N., Dan, T. and Furukawa, S., Nucl. Instrum. and Methods B39, 393 (1989).Google Scholar
[17] Iverson, R.B. and Reif, R., J. Appl. Phys. 62, 1675 (1987).Google Scholar
[18] Suzuki, M., Hiramoto, M., Oguiura, M., Kamisaka, W. and Hasegawa, S., Jpn. J. Appl. Phys., 27 L1380 (1988)Google Scholar
[19] Ion Beam Assisted Film Growth, Itoh, T., ed., Elsevier, Amsterdam, (1989).Google Scholar
[20] Smidt, F.A., International Materials Reviews, 35, 61 (1990).Google Scholar
[21] Zuhr, R.A., Pennycook, S.J., Noggle, T.S., Herbots, N. Haynes, T.E., and Appleton, B.R., Nucl. Instr. and Meth. B 37 /38, 16 (1989).Google Scholar
[22] Greene, J.E., CRC Crit. Reviews in Solid State and Materials Science. 2, 47 (1983).Google Scholar
[23] Burger, W.R. and Reif, L.R., J. Appl. Phys., 62, 4255 (1987).Google Scholar
[24] Zalm, P.C. and Beckers, L.J., Appl. Phys. Lett. 41 167 (1982).Google Scholar
[25] Choi, C.H., Hultman, L., and Barnett, S.A., J. Vac. Sci. Tech. A8, 1587 (1990).Google Scholar
[26] Tsao, J.Y., Chason, E., Horn, K.M., Brice, D.K. and Picraux, S.T., Nucl. Instr. and Meth. B, 39, 72 (1989).Google Scholar
[27] Chason, E., Tsao, J.Y., Horn, K.M. and Picraux, S.T., J. Vac. Sci. Technol. B7, 332 (1989).Google Scholar
[28] Chason, E., Tsao, J.Y., Horn, K.M., Picraux, S.T. and Atwater, H.A., J. Vac. Sci. Technol. A8, 2507 (1990).Google Scholar
[29] Tsai, C.J., Rozenak, P., Atwater, H.A. and Vreeland, T., presented at MBE VI The Sixth International Conference on Molecular Beam Epitaxy, San Diego CA, August 1990; to be published in J. Crystal Growth, 1991.Google Scholar
[30] Tsai, C.J., Atwater, H.A. and Vreeland, T., Appl. Phys. Lett., 57, 2305 (1990).Google Scholar
[31] Brice, D.K., Tsao, J.Y. and Picraux, S.T., Nucl. Instrum and Methods 44, 6878 (1989).Google Scholar