Skip to main content Accessibility help
×
Home

Evidence of Carrier Mediated Ferromagnetism in GaN:Mn/GaN:Mg Heterostructures

  • F. Erdem Arkun (a1), Mason J. Reed (a1), Erkan Acar Berkman (a1), Nadia A. El-Masry (a1), John M. Zavada (a2), M. Oliver Luen (a3), Meredith L. Reed (a3) and Salah M. Bedair (a3)...

Abstract

Dilute Magnetic Semiconductors (DMS's) posses a strong potential to make use of the spin of carriers in spintronic devices. Experimental results and theoretical calculations predict that GaN:Mn is a potential semiconductor material for spintronic device applications. The dependence of the room temperature ferromagnetic properties of GaN:Mn/GaN:Mg double heterostructures (DHS) on the Fermi level position in the crystal is demonstrated. Several GaN:Mn/GaN:Mg DHS are grown by metal organic chemical vapor deposition on sapphire. It is shown that initially paramagnetic films can be rendered ferromagnetic by facilitating carrier transfer through the GaN:Mn/GaN:Mg interface. Additionally, it is demonstrated that ferromagnetism depends on the thickness of the GaN:Mn and GaN:Mg layers. The carrier transfer process essentially changes the Fermi level position in the crystal. By choosing the right thicknesses for GaN:Mn and GaN:Mg an optimum DHS that exhibits room temperature ferromagnetism is grown. An identical structure, with the exception of insertion of an AlGaN barrier in order to obstruct the carrier transfer at the interface, results in paramagnetic films for AlGaN barriers thicker than 25nm. These results are explained based on the change in the occupancy of the 3d-Mn impurity band, and indicate that carrier mediation is the possible mechanism for the ferromagnetism observed in the MOCVD grown GaN:Mn material system. This is the first evidence that this material system responds to electronic perturbations, hence ferromagnetism observed is not due to secondary phases or spin glass behavior.

Copyright

References

Hide All
1. Zener, C., Phys. Rev. 81 4, 440 (1951).
2. Kronik, L., Jain, M., and Chelikowsky, J. R., Phys. Rev. B 66, 041203 (2002).
3. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science, vol 287, p.1019, (2000).
4. Kulatov, E., Nakayama, H., Mariette, H., Ohta, H., Uspenskii, Y.A., Phys. Rev. B 66 045203 (2002).
5. Kim, K. H., Lee, K. J., Kim, D. J., Kim, C. S., Lee, H. C., Kim, C. G., Yoo, S. H., Kim, H. J., and Ihm, Y. E., J. Appl. Phys. 93, 6793 (2003)
6. Reed, M.L., Ritums, M.K., Stadelmaier, H. H., Reed, M.J., Parker, C.A., Bedair, S.M., ans El-Masry, N. A., Mater. Lett. 51, 500 (2001)
7. Reed, M. K., El-Masry, N. A., Stadelmaier, H. H., Ritums, M. K., Reed, M.J., Parker, C.A., Roberts, J.C., Bedair, S.M., Appl. Phys. Lett. 79, 3473, (2001)
8. Sonada, S., Shimizu, S., Sasaki, T., Yamamoto, Y., Hori, H., J. Cryst. Growth 237–239, 1358, (2002)
9. Thaler, G.T., Overberg, M. E., Gila, B., Frazier, R., Abernathy, C. R., Pearton, S.J., Lee, J. S., Lee, Y. Y., Park, Y. D., Khim, Z. G., Kim, J., and Ren, F., et. al, Appl. Phys. Lett. 80, 3964 (2002)
10. Korotkov, R. Y., Gregie, J. M., and Wessels, B. W., Appl. Phys. Lett. 80, 1731, (2002).

Evidence of Carrier Mediated Ferromagnetism in GaN:Mn/GaN:Mg Heterostructures

  • F. Erdem Arkun (a1), Mason J. Reed (a1), Erkan Acar Berkman (a1), Nadia A. El-Masry (a1), John M. Zavada (a2), M. Oliver Luen (a3), Meredith L. Reed (a3) and Salah M. Bedair (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed