Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T10:24:29.062Z Has data issue: false hasContentIssue false

Evidence for Vacancy Clustering in Silicon Implanted Indium Phosphide

Published online by Cambridge University Press:  25 February 2011

Peter J. Schultz
Affiliation:
Dept. of Physics, The University of Western Ontario London, Ontario, CanadaN6A SK7
P.J. Simpson
Affiliation:
Dept. of Physics, The University of Western Ontario London, Ontario, CanadaN6A SK7
U.G. Akano
Affiliation:
Dept. of Physics, The University of Western Ontario London, Ontario, CanadaN6A SK7
I.V. Mitchell
Affiliation:
Dept. of Physics, The University of Western Ontario London, Ontario, CanadaN6A SK7
Get access

Abstract

Damage induced in InP wafers by ion implantation has been investigated using Doppler broadening of annihilation radiation from variable-energy positrons (VEP), Rutherford backscattering/channeling (RBS), and room temperature photoluminescence (PL). Si* ions were implanted at 600 keV incident energy to total fluences from 1011 to 1014 ions cm−2. Annealing at room temperature was monitored for ∼100 days, during which both VEP and RBS showed recovery of the crystal toward the pre–implanted condition. RBS measurements of samples annealed at elevated temperatures showed that full restoration of lattice order occurred at 375 K, but VEP data for isochronal annealing up to 720 K showed only a moderate reduction in the vacancy–type defect concentration with a significantly narrower lineshape, consistent with vacancy clustering. PL measurements for MOCVD grown InP layers annealed up to 1100 K after implantation also indicated only moderate defect reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Schultz, P.J., and Lynn, K.G., Rev. Mod. Phys. 60, 701 (1988).Google Scholar
2 Simpson, P.J., Vos, M., Mitchell, I.V., Wu, C. and Schultz, P.J., Phys. Rev. B 44, 12180 (1991).Google Scholar
3 Hautojärvi, P., Huttunen, P., Makinen, J., Punkka, E. and Vehanen, A., Mat. Res. Soc. Symp. Proc Vol. 104, Materials Research Society, 105 (1988).Google Scholar
4 Keinonen, J., Hautala, M, Rauhala, E., Karttunen, V., Kuronen, A., Raisn, J., Lahtinen, J., Vehanen, A., Punkka, E. and Hautojhärvi, P., Phys. Rev. B 37, 8269 (1988).CrossRefGoogle Scholar
5 Uedono, A., Tanigawa, S., Suguira, J. and Ogasawara, M., in Positron Annihilation, edited by Dorikens-Vanpraet, L., Dorikens, M. and Segers, D., World Scientific Publishing, p. 690 (1989).Google Scholar
6 Jackman, T.E., Aers, G.C., Denhoff, M.W., and Schultz, P.J., Appl. Phys. A, Rapid Commun. 49, 335 (1989).Google Scholar
7 Perovic, D.D., Weatherly, G.C., Simpson, P.J., Schultz, P.J., Jackman, T.E., Aers, G.C., Noel, J.-P., and Houghton, D.C., Phys. Rev. B 43, 14257 (1991).Google Scholar
8 Simpson, P.J., Schultz, P.J., Lee, S.-Tong, Chen, Samuel, and Braunstein, G., J. Appl. Phys. (in press, 1992).Google Scholar
9 Iwase, Y., Uedono, A., Tanigawa, S. and Araki, H., in Positron Annihilation, ed. Jain, P.C., Singru, R.M. and Gopinathan, K.P., World Scientific Publishing Co., 753 (1985).Google Scholar
10 Uedono, A. and Tanigawa, S., Japn. J. Appl. Phys. 29, 909 (1990).Google Scholar
11 Sadana, D.K., Nuc. Inst. Meth. B7/8, 375 (1985).Google Scholar
12 Schultz, P.J., Nuc. Inst. Meth. B30, 94 (1988).CrossRefGoogle Scholar
13The W–parameter is defined as the counts in the wings of the annihilation γ–ray peak (507.3–509.7 and 512.3–514.7 keV) divided by the total counts in the peak (506.2–515.8 keV); see ref. 1 for more details.Google Scholar
14 Aers, G.C., p.162 in Positron Beams for Solids and Surfaces, ed. Schultz, P.J., Massoumi, G.R. and Simpson, P.J. (AIP Press, New York, 1990).Google Scholar
15 Akano, U.G., Mitchell, I.V. and Shepherd, F.R., Appl. Phys. Lett., 59, 2570 (1991).CrossRefGoogle Scholar
18 Akano, U.G., Mitchell, I.V., Shepherd, F.R., and Miner, C.J., J. Vac. Sci. Tech. A10, #4, July/Aug (1992)Google Scholar
17 Biersack, J.P., Haggmark, L.G., Nuc. Inst. Meth. 174, 257 (1980).Google Scholar
18 Dautremont-Smith, W.C., Lopata, J., Pearton, S.J., Koszi, L.A., Stavola, M. and Swaminathan, V., J. Appl. Phys. 66, 1993 (1989).Google Scholar
19 Corbett, J.W., Karins, J.P. and Tan, T.Y., Nuc. Inst. Meth. 182/183, 457 (1981).Google Scholar
20 Schultz, P.J., Thompson, T.D., and Elliman, R.G., Appl. Phys. Lett. 60, 59 (1992).Google Scholar