Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T19:22:12.612Z Has data issue: false hasContentIssue false

Evidence for Substitutional C, Ordering Effects and Interdiffusion in Epitaxial GE-C and GE-RICH GE-SI-C Alloys

Published online by Cambridge University Press:  10 February 2011

Bi-Ke Yang
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University Houghton, MI 49931
W. H. Weber
Affiliation:
Physics Department, Ford Research Laboratories, Dearborn, MI 48121-2053
M. Krishnamurthy
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University Houghton, MI 49931
Get access

Abstract

We report on the epitaxial growth of Ge-C and Ge-Si-C alloys (C<10%) grown on Si(100) and Ge(100) substrates using low temperature (∼200°C) molecular beam epitaxy. Thin films (50–70 nm) were characterized in-situ by RHEED and ex-situ by transmission electron microscopy, xray diffraction, and Raman spectroscopy. The films were annealed at 750°C and 850°C in an Ar atmosphere to study interdiffusion effects.

Raman spectroscopy of Ge-C on Ge indicates the existence of a Ge-C local mode at 530cm−1 and is direct evidence for the presence of substitutional C in Ge. The GeSiC alloys grown on Ge do not show the Ge-C local mode, consistent with preferential Si-C bonding. There is evidence for strain enhanced solubility of C based on a comparison of the substitutional C content in Ge-C films on Si (∼1 at %) and on Ge substrates (∼0.1 at %). Silicon interdiffusion in annealed Ge-C samples is strongly suppressed by the presence of C. A simple diffusion model is used to illustrate Si indiffusion in Ge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bean, J. C., Proc. IEEE 80, 571 (1992).Google Scholar
[2] Soref, R. A., Proc. IEEE 81, 1687 (1993).Google Scholar
[3] Powell, A. R., LeGoues, F. K. and Iyer, S. S., Appl. Phys. Lett. 64, 324 (1994)Google Scholar
[4] Todd, M., Kouvetakis, J., and Smith, D. J., Appl. Phys. Lett. 68, 2407 (1996).Google Scholar
[5] Regoloni, J. L., Bodnar, S., Oberlin, J.C., Ferrieu, F., Gauneau, M., Lambert, B. and Boucaud, P., J. Vac. Sci. Technol. A 12, 1015 (1994)Google Scholar
[6] Kolodzey, J., O'Neil, P. A., Zhang, S., Orner, B. A., Roe, K., Unruh, K. M., Swann, C. P., Waite, M. M. and Shah, S. Ismat, Appl. Phys. Lett. 67, 865 (1995).Google Scholar
[7] Atzmon, Z., Bair, A. E., Jaquez, E. J., Mayer, J. W., etc., Appl. Phys. Lett. 65, 2559 (1994).Google Scholar
[8] Powell, A. R., Eberl, K., Ek, B. A. and Iyer, S. S., J. Cryst. Growth 127, 425 (1993)Google Scholar
[9] Osten, H. J., Bugiel, E. and Zaumseil, P., J. Cryst. Growth 142, 322 (1994).Google Scholar
[10] Krishnamurthy, M., Drucker, J. S. and Challa, A., J. Appl. Phys. 78, 7070 (1995)Google Scholar
[11] Krishnamurthy, M., Yang, Bi-Ke and Weber, W. H., Appl. Phys. Lett. 69, 2572 (1996).Google Scholar
[12] Yang, B.-K., Krishnamurthy, M., and Weber, W. H., J. Appl. Phys. 82, 3287 (1997).Google Scholar
[13] Yang, Bi-Ke, Krishnamurthy, M., and Weber, W. H., Structure and Evolution of Surfaces, Mat. Res. Soc. Symp. Proc., Vol. 440, 371 (1997).Google Scholar
[14] Yang, Bi-Ke, Krishnamurthy, M., and Weber, W. H., to be published.Google Scholar
[15] Weber, W. H., Yang, Bi-Ke, and Krishnamurthy, M., to be published.Google Scholar
[16] Kelires, P. C., Phys. Rev. Lett. 75, 1114 (1995).Google Scholar
[17] Raisanen, J., Hirvonen, J., and Antilla, A., Solid State Electron., 24, 333 (1981).Google Scholar
[18] Sodervall, U. and Friesel, M., Defect and Diffusion Forum, 143–147, 1053 (1997).Google Scholar
[19] Yang, Bi-Ke, Ph.D. Thesis, Michigan Technological University, 1998.Google Scholar