Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T13:00:11.173Z Has data issue: false hasContentIssue false

Evaluation Of The Capacity Of Granulation In Surgical Wounds with Condensed Tannins in Matrices Tio2.

Published online by Cambridge University Press:  14 December 2012

José Albino M. Rodrìguez
Affiliation:
Facultad de Ciencias Químicas
José Rutilio M. López
Affiliation:
Facultad de Ciencias Químicas
Genaro C. Gutiérrez
Affiliation:
Facultad de Ciencias Químicas
Marco-Antonio G Coronel
Affiliation:
Facultad de Ciencias Químicas
Enrique S. Mora
Affiliation:
Instituto de Física
Lilián-Aurora M Rodríguez
Affiliation:
Facultade Ciencias Físico-Matemáticas. Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur. Col. San Manuel, C. U. Puebla, Pue., C.P. 72570.
Fernando M. Rodríguez
Affiliation:
Hospital de Chiautla de Tapia, 11 Norte Carretera a Ixcamilpa S/N, C.P. 74730, Puebla.
Get access

Abstract.

The nanoencapsulation in biocompatible inorganic materials with human cell activity is a leading technology to control the process of releasing the drug in the right place. At present, the sol-gel process has emerged as a promising platform for the immobilization, stabilization and encapsulation of biological molecules such as enzymes, antibodies, microorganisms, and a variety of drugs. The matrices obtained are chemically inert, hydrophilic and easy synthesis. They have high mechanical strength, thermal stability in wide temperature ranges and absorb organic solvents so insignificant compared with other organic polymers. They are resistant to microbial attack and exhibit high biocompatibility with the body, as provided for implantation in situ in the treatment of various diseases. An additional advantage is that it provides viability encapsulated molecules, since these matrices act as reservoirs of water thus helping to maintain the biological activity of enzymes, antibodies, cells, and drugs for the moisture level required for the molecule. We used the action of the active ingredients of tepezcohuite (condensed tannins) to assess the capacity aseptic surgical wound healing than 1 cm in diameter in New Zealand white rabbits. Experimentally and statistically demonstrating the effectiveness of healing nanoreservoirs Tan/TiO2-150 the weight of tannins by 60% compared to condensed tannins as such, TiO2and isotonic saline.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES.

Zapata, D. M., Estrada, A., “Calidad de vida relacionada con la salud de las personas afectadas por quemaduras después de la cicatrización”, Medellín, Colombia, Biomédica 30, 492500 (2010).Google Scholar
Cuadrac, A., Pineros, J.L., Roa, R., Rev. Med. Clin. CONDES 21(1), 4145 (2010).Google Scholar
Camargo-Ricalde, S.L., “Descripción, distribución, anatomía, composición química y usos de Mimosa tenuiflora (Fabaceae-Mimosoideae) en México”, Rev. biol. Trop, 48 4 (2000).Google Scholar
Morales, B., Pérez, J.A., “Manual de identificación de árboles de selva baja mediante cortezas”, Cuadernos No. 6. Inst. Biología, UNAM, 83 México (1990).Google Scholar
Navarro, J.R.. “Propiedades farmacológicas y extracción de principios activos de la corteza del tepezcohuite”. Tesis de licenciatura, UAM-I, marzo (1988).Google Scholar
Anton, R., Jiang, Y., Weniger, B., Beck, J. P. and Rivier, L., “Pharmacognosy of Mimosa tenuiflora, (Willd.) Poiret.” J. Ethnopharmacol. 38, 153157 (1993).CrossRefGoogle ScholarPubMed
Lozoya, M. M., Lozoya, X. and González, J.L., “Propiedades farmacológicas in vitro de algunos extractos de Mimosa tenuiflora (tepescohuite)”. Arch. Invest. Méd, 21, 163169 (1990).Google Scholar
Urióstegui, A., “Algunas plantas curativas de Taxco, Guerrero, México”, Tlahui-Medic, 2, 26 (2008).Google Scholar
Founai, J., “Actividad Bacteriológica, Fisiológica y su uso en Cosmetología del Tepezcohuite”. Facultad de Farmacia. Universidad del sur de París, 1 (1990).Google Scholar
Founai, J., Facultad de Farmacia. “Reporte de la evaluación de la actividad bacteriostática del tepezcohuite”. Universidad de París 1 (1991).Google Scholar
Laboratorio Industrial de Biología, “Análisis General del Tepezcohuite”, París, Francia. (1991).Google Scholar
Safepharm Laboratories Ltda, “Examen de Toxicidad del Tepezcohuite”, Londres, Inglaterra, 1 (1991).Google Scholar
Instituto Mexicano del Seguro Social, “Reporte sobre el Efecto Antimicrobiano de los Extractos de la Corteza del Tepezcohuite”, 1, (1991).Google Scholar
Macédo., M. R., Vieira Pereira, S., Filgueiras, L., Vieira, A., Guedes, O., “Atividade Antimicrobiana e Antiaderente do Extrato da Mimosa tenuifl ora (Willd). Poir. Sobre Microrganismos do Biofilme Dentário”, Pesq. Bras. Odontoped Clin. Integr. João Pessoa, 9 2, 161165 (2009).CrossRefGoogle Scholar
López, T., Ortiz-Islas, E., Vinogradova, E., Manjarrez, J., Azamar, J.A., Alvarado-Gil, J. J. and Quintana, P., “Optical Materials Structural, Optical andVibracional Properties of Sol-Gel Titania Valproic Acid Reservoirs”, 29, 8287 (2006).Google Scholar
López, T., Basaldella, E. I., Ojeda, M.L., Manjarrez, J. and Alexander-Katz, R., “Optical Materials Encapsulation of valproic acid and sodicphenytoine in ordered mesoporous SiO2 solids for the treatment of temporal lobe epilepsy”, 29, 7581 (2006).Google Scholar
López, T., Manjarrez, J., Rembao, D., Vinogradova, E., Moreno, A., González, R. D., “An implantable sol-gel derived titania-silica carrier system for the controlled release of anticonvulsants”, Mat. Lett 60, 29032908, (2006).CrossRefGoogle Scholar
Peterson, A., López, T., Ortiz-Islas, E. and González, R.D., “Pore structures in an implantable sol-gel Titania ceramic device used in controlled drug release applications: A modeling study”, Applied Surface Science 253, 57675771, (2007).CrossRefGoogle Scholar