Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T05:18:02.736Z Has data issue: false hasContentIssue false

Establishment of Reaction Phase Diagrams of Pseudo Quaternary Li-Ni-Co-Ti Oxides Library

Published online by Cambridge University Press:  01 February 2011

Kenjiro Fujimoto
Affiliation:
fujimoto@rs.noda.tus.ac.jp, Tokyo University of Science, Department of Pure and Applied Chemistry, 2641 Yamazaki, Noda, 278-8510, Japan, +81-4-7124-1501, +81-4-7123-9890
Kazuhiro Onoda
Affiliation:
j7202030@yahoo.co.jp, Tokyo University of Science, Department of Pure and Applied Chemistry, 2641 Yamazaki, Noda, 278-8510, Japan
Shigeru Ito
Affiliation:
ito@rs.noda.tus.ac.jp, Tokyo University of Science, Department of Pure and Applied Chemistry, 2641 Yamazaki, Noda, 278-8510, Japan
Get access

Abstract

Reaction phase diagram of pseudo four-components Li-Ni-Co-Ti oxides was established for finding new chemical composition and functional materials by the combinatorial high-throughput preparation system “M-ist Combi,” based on electrostatic spray deposition process and the combinatorial x-ray powder diffraction apparatus. The new layered-type compounds were found wider composition region than the previous reported composition region of LiNi0.8-yCo0.2TiyO2 (0≤y≤0.1). Furthermore, the new composition regions of single phase for spinel-type and rock salt-type compounds in pseudo four-components Li-Ni-Co-Ti oxides system were also found in a short time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kobayashi, Y., Miyashiro, H., Takeuchi, T., Shigemura, H., Balakrishnan, N., Tabuchi, M., Kageyama, H. and Iwahori, T., Solid State Ionics 152–153, 137 (2002).Google Scholar
2. Taniguchi, I., Landschoot, R. C. van and Schoonman, J., Solid State Ionics 160(3-4), 271 (2003).Google Scholar
3. Fujimoto, K., Takahashi, H., Ito, S., Inoue, S. and Watanabe, M., Appl. Surf. Sci. 252 2446 (2006).Google Scholar
4. Cho, J., Kim, G. and Lim, H.S., J. Electrochem. Soc. 146 3571 (1999).Google Scholar
5. Cho, J., Jung, H.S., Park, Y.C., Kim, G.B. and Lim, H.S., J. Electrochem. Soc. 147 15 (2000).Google Scholar
6. Ohzuku, T. and Makimura, Y., Chem. Lett. 30(7), 642 (2001).Google Scholar
7. Ohzuku, T. and Makimura, Y., Chem. Lett. 30(8), 744 (2001).Google Scholar
8. Makimara, Y. and Ohzuku, T., J. Power Sources 119–121 156 (2003).Google Scholar
9. Tsuda, M., Arai, H., Ohtsuka, H. and Sakurai, Y., Electrochem. Solid State lett. 7(10), A343 (2004).Google Scholar
10. Chang, S. H., Kang, S.-G., Song, S.-W., Yoon, J.-B. and Choy, J.-H., Solid State Ionics 86–88 171 (1996).Google Scholar
11. Kang, K., Carlier, D., Reed, J., Arroyo, E. M., Ceder, G., Croguennec, L. and Delmas, C., Chem. Mater. 15 4503 (2003).Google Scholar
12. Liu, H., Li, J., Zhang, Z., Gong, Z. and Yang, Y., Electrochem. Acta 49(7), 1151 (2004).Google Scholar
13. Arai, H., Tsuda, M. and Sakurai, Y., J. Power Sources 90 76 (2000).Google Scholar
14. Fujimoto, K. and Watanabe, M., Meas. Sci. Tech. 16 41 (2005).Google Scholar
15. Takeuchi, I., Long, C.J., Famodu, O.O., Murakami, M., Hattrick-Simpers, J., Rubloff, G. W., Stukowski, M. and Rajan, K., Rev. Sci. Inst. 76 062223 (2005).Google Scholar
16. Li, D., Muta, T. and Noguchi, H., J. Power Sources 135 262 (2004).Google Scholar
17. Ueda, Y., Tanaka, T., Kosuge, K., Ishikawa, M. and Yasuoka, H., J. Solid State Chem. 77 401 (1988).Google Scholar
18. Kanno, T., Awaka, J., Kariya, F., Ebisu, S. and Nagata, S., Phisica B 381 30 (2006).Google Scholar
19. Hernán, L., Morales, J., Sánchez, L., Santos, J., Solid State Ionics 118 179 (1999).Google Scholar