Skip to main content Accessibility help

The Essence and Efficiency Limits of Bulk-Heterostructure Organic Solar Cells

  • M. Alam (a1), B. Ray (a1), M. Khan (a1) and S. Dongaonkar (a1)


Since its introduction in early 1990s, bulk-heterojunction organic photovoltaic solar cell (BHJ-OPV) has promised high-efficiency at ultra-low cost and weight, with potential for non-traditional applications such as building-integrated PV. There is a widespread presumption, however, that the complexity of morphology makes carrier transport in OPV irreducibly complicated, and possibly, beyond predictive modeling. In this paper, we use elementary and intuitive arguments to derive the fundamental thermodynamic as well as morphology-specific practical limits of BHJ-OPV efficiency. We find that constraints of the percolation threshold and trade-off among short-circuit current, open circuit voltage, and fill factor make substantial improvement in OPV efficiency difficult. We posit that future improvement in OPV will rely not on morphology engineering, or reducing the polymer bandgap, but on increasing both the effective μ × τ product and the cross-gap between donor/acceptors. Even if the OPV fails to achieve the highest efficiency anticipated by the thermodynamic limit, its novel form factor, lightweight, and transparency can make it a commercially viable option for many applications.


Corresponding author



Hide All
1. Krebs, F. C., J Mater Chem, 19(30), 5442 (2009).
2. Nelson, J., Materials Today 14 (10) 470 (2011).
3. Forrest, S. R., MRS Bull. 30(1) 2832, Jan, (2005).
4. Onsager, L., Physical Rev. 54 (8) 554557 (1938).
5. Shockley, W. and Queisser, , J. Appl. Phys., 32, 510 (1961)
6. De Vos, Alexis, Thermodynamics of Solar Energy Conversion (Wiley-VCH, ISBN 978-3-527-40841-2, 2008).
7. Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R., and Forrest, S.R., Phys Rev B 83 195326 (2011).
8. Khan, R. and Alam, M., Unpublished results (2011).
9. Yu, G. et al. ., Science, 270 (5243) 1789 (1995). J.J. M. Halls 376 (6540) 498(1995).
10. Peumans, P., Uchida, S., and Forrest, S., Nature, 425 6954, 158162 (2003).
11. Ray, B., Nair, P. R., García, R. E., Alam, M.A., in Proc. International Electron Devices Meeting (2009).
12. Ray, B., Nair, P. R., and Alam, M. A., Solar Energy Materials and Solar Cells 95 32873294 (2011).
13. Ray, B., Lundstrom, M. S., and Alam, M. A., Applied Physics Letters (2012).
14. Ray, B., and Alam, M. A., Solar Energy Materials and Solar Cells (2012).
15. Ray, B. and Alam, M.A., Appl. Phys. Lett. 99 033303 (2011)
16. Alam, M. A., “Nanostructured Electronic Devices: Percolation and Reliability, Online lecture series:,” (2009).
17. Pierret, R. F., Semiconductor Device Fundamentals (New York: Addison-Wesley, 1996).
18. Bhattacharya, P., Semiconductor optoelectronic devices (2nd ed., Upper Saddle River, N.J.: Prentice Hall, 1997).
19. Green, M., Solar Energy, vol. 74(3), 181192, (2003).
20. Park, S., Roy, A., Beaupre, S. et al. ., Nature Photonics, 3(5), 297, (2009).
21. Hoppe, H., and Sariciftci, N., J. of Mat. Chem., 16(1) 4561 (2006).
22. Balluffi, R. W., Allen, S. M., Carter, W. C. et al. ., Kinetics of materials (Hoboken, N.J.:Wiley-Interscience, 2005).
23. Klein, W., Phys. Rev. Lett, 65(12), 14621465 (1990).
24. Lifshitz, I., and Slyozov, V., J. of Physics and Chemistry of Solids, 19 35 (1961).
25. Koster, L. J. A., Smits, E. C. P., Mihailetchi, V. D., and Blom, P. W. M., Phys. Rev. B, 72(8), 085205 (2005).
26. Zhu, X. and Kahn, A., MRS Bulletin, 35(6) 443448 (2010).
27. Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R., and Forrest, S. R., Phys. Rev. B 82, 155305 (2010).
28. Monestier, F., Simon, J., Torchio, P., Escoubas, L., Flory, F., Bailly, S., de Bettig-nies, R., Guillerez, S., and Defranoux, C., Solar Energy Mater. and Solar Cells 91, 405 (2007).
29. Uhrich, C., Wynands, D., Olthof, S., Riede, M. K., Leo, K., Sonntag, S., Maennig, B., and Pfeiffer, M., Journal of Applied Physics, 104(4), 043107–6 (2008).
30. Ayzner, A. L., Tassone, C. J., Tolbert, S. H., and Schwartz, B. J., The Journal of Physical Chemistry C 113 20050 (2009).
31. Ferenczi, T. A. M., Nelson, J., Belton, C., Ballantyne, A. M., Campoy-Quiles, M., Braun, F. M., and Bradley, D. D. C., J. of Physics: Condensed Matter 20 (47) 475203 (2008).
32. Rand, B. P., Burk, D. P., and Forrest, S. R., Phys. Rev. B 75 115327 (2007).
33. Gupta, D., Mukhopadhyay, S., and Narayan, K., Solar Energy Mat. and Solar Cells 94 1309 (2010).
34. Mayer, A.C., Toney, M.F., Scully, S.R., Rivnay, J., Brabec, C.J., Scharber, M., Koppe, M., Heeney, M., McCulloch, I., and McGehee, M.D., Adv. Func. Mat. 1173 (2009)
35. Park, S. H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J. S., Moses, D., Leclerc, M., Lee, K., and Heeger, A. J., Nat. Photon. 3 297 (2009).
36. Honda, S., Ohkita, H., Benten, H., and Ito, S., Adv. Energy Mat. 1 588 (2011).
37. Green, M., Prog. in Photovoltaics (2011).
38. Zhang, G., Li, W., Chu, B., Chen, L., Yan, F., Zhu, J., Chen, Y., and Lee, C. S., Appl. Phys. Lett. 94143302-3 (2009).
39. Tada, A., Geng, Y., Wei, Q., Hashimoto, K., and Tajima, K., Nat Mater, 10, 450-455 (2011).
40. McGehee, M. D., MRS Bulletin, 34(2) 95100 (2009).
41. Gorodetsky, A. A., Chiu, C., Schiros, T., Palma, M., Cox, M., Jia, Z., Sat-tler, W., Kymissis, I., Steigerwald, M., and Nuckolls, C., Angewandte Chemie International Edition, 49(43) 79097912 (2010).
42. Li, L., Hu, W., Fuchs, H., and Chi, L., Advanced Energy Materials, 1(2), 188193(2011).


The Essence and Efficiency Limits of Bulk-Heterostructure Organic Solar Cells

  • M. Alam (a1), B. Ray (a1), M. Khan (a1) and S. Dongaonkar (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed