Skip to main content Accessibility help
×
Home

Erbium Doping of Silicon and Silicon Carbide Using Ion Beam Induced Epitaxial Crystallization

  • P. Boucaud (a1), F.-H. Julien (a1), J.-M. Lourtioz (a1), H. Bernas (a2), C. Clerc (a2), J. Chaumont (a2), S. Bodnar (a3), J.-L. Regolini (a3) and X. W. Lin (a4)...

Abstract

Erbium doping of silicon and silicon carbide using implantation followed by ion beam induced epitaxial crystallization (IBIEC) is investigated. The implanted concentration of Er was 1.4 at% in both cases. In Si(100), Rutherford backscattering/channeling revealed that about 40% of the Er atoms evolved upon rapid thermal annealing from an undetermined position (room temperature) to an interstitial tetrahedral position (650°C) and finally to a substitutional position (950°C). The remaining Er atoms were presumably trapped in the small precipitates visible in high resolution transmission electron microscopy. The photoluminescence at 1.54 μπι of Er3+ is enhanced with annealing and persists up to room temperature after a 950 °C 1 min anneal. The high concentration of optically active Er atoms is illustrated by the lack of saturation of the photoluminescence at high pumping excitation intensity. Erbium was also implanted into cubic silicon carbide films prepared by chemical vapor deposition on Si at 900 °C. Both solid phase epitaxy (SPE) and IBIEC were performed. After a 950°C anneal, the low temperature photoluminescence at 1.54 μιη after IBIEC was five times higher in SiC than in silicon. The difference in photoluminescence linewidth between IBIEC (broad lines) and SPE (sharp lines) is explained in terms of interactions between optically active erbium atoms.

Copyright

References

Hide All
1 Ennen, H., Schneider, J., Pomrenke, G., Axmann, A., Appl. Phys. Lett. 43,943 (1983).
2 Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y.-H., Poate, J. M., Kimerling, L. C., J. Appl. Phys. 70,2672 (1991).
3 Coffa, S., Franzo, G., Priolo, F., Polman, A., Serna, R., Phys. Rev. B 49,16313 (1994).
4 Polman, A., Custer, J. S., Snoeks, E., van den Hoven, G. N., Appl. Phys. Lett. 62,507 (1993).
5 Golecki, I., Reidinger, F., J. Marti, Appl. Phys. Lett. 60,1703 (1992).
6 Bernas, H., Clerc, C., Chaumont, J., Boucaud, P., Francis, C., Julien, F.-H., Lourtioz, J.-M., Lin, X. W., unpublished.
7 Weber, J., Schmid, W., Sauer, R., Phys. Rev. B 21,2401 (1980).
8 Choyke, W. J., Devaty, R. P., Clemen, L. L., Yoganathan, M., Pensl, G., Hässler, Ch., Appl. Phys. Lett. 65,1668 (1994).

Erbium Doping of Silicon and Silicon Carbide Using Ion Beam Induced Epitaxial Crystallization

  • P. Boucaud (a1), F.-H. Julien (a1), J.-M. Lourtioz (a1), H. Bernas (a2), C. Clerc (a2), J. Chaumont (a2), S. Bodnar (a3), J.-L. Regolini (a3) and X. W. Lin (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed