Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-11T12:53:33.914Z Has data issue: false hasContentIssue false

Epitaxial Solid-Solution Films of Immiscible MgO and CaO

Published online by Cambridge University Press:  15 February 2011

E. S. Hellman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
E. H. Hartford Jr.
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Metastable solid-solutions in the MgO-CaO system grow readily on MgO at 300°C by molecular beam epitaxy. We observe RHEED oscillations indicating a layer-by-layer growth mode; in-plane orientation can be described by the Matthews theory of island rotations. Although some films start to unmix at 500°C, others have been observed to be stable up to 900°C. The Mgl-xCaxO solid solutions grow despite a larger miscibility gap in this system than in any system for which epitaxial solid solutions have been grown. We describe attempts to use these materials as adjustable-lattice constant epitaxial building blocks

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burgers, W. G. and Ploos van Amstel, W. G., Physica 3, 1057 (1936).Google Scholar
2. Sproull, R. L., Dash, W. C., Tyler, W. W. and Moore, A. R., Rev. Sci. Inst. 22, 410 (1951).Google Scholar
3. Reichelt, K., J. Cryst. Growth 19, 258 (1973).Google Scholar
4. Berezin, A. B., Yuan, C. W. and de Lozanne, A. L., Appl. Phys. Lett. 57, 90 (1990).Google Scholar
5. Fork, D. K., Ponce, F. A., Tramontana, J. C. and Geballe, T. H., Appl. Phys. Lett. 58, 2294 (1991).Google Scholar
6. Tonouchi, M., Sakaguchi, Y. and Kobayashi, T., J. Appl. Phys. 62, 961 (1987).Google Scholar
7. Nashimoto, K., Fork, D. K. and Geballe, T. H., Appl. Phys. Lett. 60, 1199 (1992).Google Scholar
8. Hsu, W.-Y. and Raj, R., Appl. Phys. Lett 60, 3105 (1992).Google Scholar
9. Yadavalli, S., Yang, M. H. and Flynn, C. P., Phys. Rev. B 41, 7961 (1990).Google Scholar
10. A good list of references can be found in Martins, J. L. and Zunger, A., Phys. Rev. Lett. 56, 1400 (1986).CrossRefGoogle Scholar
11. Hong, W.-P., Battacharya, P. K. and Singh, J., Appl. Phys. Lett. 50, 618 (1987).Google Scholar
12. Yang, M. H. and Flynn, C. P., Phys. Rev. Lett. 62, 2476 (1989).Google Scholar
13. Talvacchio, J., Gavaler, J. R. and Braginski, A. I., in Metallic Multilayers and Epitaxy, Edited by Hong, M., Gubser, D. U., Wolf, S. A., (The Metallurgical Society, Warrendale, 1988), 109.Google Scholar
14. Mao, X. L., Perry, D. L. and Russo, R. E., J. Mater. Res. 8, 2400 (1993).CrossRefGoogle Scholar
15. Hellman, E. S. and Hartford, E. H. Jr., Appl. Phys. Lctt 64, 1341 (1994).Google Scholar
16. Spah, R. J., Hess, H. F., Stormer, H. L., White, A. E. and Short, K. T., Appl. Phys. Lett 53, 441 (1988).CrossRefGoogle Scholar
17. Rasband, W., NIH Image version 1.41 for Macintosh (National Institutes of Health, Bethesda, 1991).Google Scholar
18. Matthews, J. W., in Epitaxial Growth. Part B, Edited by Matthews, J. W., (Academic Press, New York, 1975), 566.Google Scholar
19. Spinolo, G. and Anselmi-Tamburini, U., J. Chem. Phys. 93, 6837 (1989).Google Scholar
20. Davies, P. K. and Navrotsky, A., J. Sol. St. Chem. 46, 1 (1983).Google Scholar
21. Hellman, E. S., Hartford, E. H. and Gyorgy, E. M., Appl. Phys. Lett. 58, 1335 (1991).CrossRefGoogle Scholar