Skip to main content Accessibility help
×
Home

Epitaxial Oxide Films on Silicon: Growth, Modeling and Device Properties

  • R. Droopad (a1), J. Wang (a2), K. Eisenbeiser (a2), Z. Yu (a2), J. Ramdani (a2), J. A. Curless (a2), C. D. Overgaard (a2), J. M. Finder (a2), J. A. Hallmark (a2), V. Kaushik (a3), B. Y. Nguyen (a3), D. S. Marshall (a2) and W. J. Ooms (a2)...

Abstract

Using molecular beam epitaxy, thin films perovskite-type oxide SrxBa1−xTiO3 (0≤×≤1) has been grown epitaxially on Si(001) substrates. Reflection high energy electron diffraction measurements and X-ray diffraction analysis indicate that high quality heteroepitaxy on Si takes place with SrxBa1−xTiO3(001)//Si(001) and SrxBa1−xTiO3[010]//Si[10]. Extensive atomic simulations have been carried out to understand the initial growth mechanism of the oxide layers on silicon. SrTiO3 layers grown directly on Si have been used as the gate dielectric for the fabrication of MOSFET devices. By varying the growth conditions the thickness of the amorphous interfacial silicon oxide layer formed during the growth of the oxide layers has been engineered to minimize the device short channel effects. An effective oxide thickness <10 Å has been obtained for a 110 Å thick SrTiO3 dielectric film with interface state density around 6.4 × 1010 cm−2 eV-1, and the inversion layer carrier mobilities of 220 cm2 V−1 s−1 and 62 cm 2 V−ls−1 for NMOS and PMOS devices, respectively. The gate leakage in these devices is 2 orders of magnitude smaller than a comparable SiO2 gate dielectric MOSFET.

Copyright

References

Hide All
1 Hu, C., IEDM Tech. Dig., p. 319 (1996).
2 Park, D., King, Y., Lu, Q., King, T.-J., Hu, C., Kalnitsky, A., Tay, S.-P., and Cheng, C.-C., IEEE Electron Device Letters, 19(11), p441 (1998).
3 Guo, X., Wang, X., Juo, Z., Ma, T. P. and Tamagawa, T., IEDM Technical Digest, p137 (1999).
4 Qi, W.-J., Nieh, R., Lee, B. H., Kang, L., Jeong, Y., Onishi, K., Ngai, T., Banerjee, S., and Lee, J. C., IEDM Technical Digest, p145 (1999).
5 Lee, B. H., Kang, L., Qi, W.-J., Nieh, R., Jeong, Y., Onishi, K. and Lee, J. C., IEDM Technical Digest, p133 (1999).
6 Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys., 87, p484 (2000).
7 Tokumitu, E., Itani, K., Moon, B. and Ishiwara, H., Mater. Res. Soc. Symp. Proc., (361)
8 Sanchez, F., Varela, M., Queralt, X., Aguiar, R. and Morenza, J.L., Appl. Phys. Lett., 61(18), p2228 (1992).
9 Looney, D. H., U.S. Patent No. 2,791,758.
10 Hoerman, B., Ford, G., Kaufman, L. and Wessels, B., ISIF'98, p.102C (1998).
11 McKee, R.A., Walker, F.J., Conner, J.R. and Specht, E.D., Appl. Phys. Letts. 59, p782 (1991).
12 Lyu, J., Jeong, J., Kim, K., Kim, B. and Yo, H. J., ETRI Journal, 20, p241.
13 Mori, H. and Ishiwara, H., Jap. J. Appl. Phys., Part 2 (Letters) 30, p 1415 (1991).
14 Sanchez, F., Aguiar, R., Trtik, V., Guerrero, C., Ferrater, C. and Varela, M., J. Mater. Res., 13, p 1422 (1998).
15 Nakagawara, O., Kobayashi, M., Yoshino, Y., Katayama, Y., Tabata, H. and Kawai, T., J. Appl. Phys. 78, p7226 (1995).
16 Mori, H. and Ishiwara, H., Jpn. J. Appl. Phys. 30, pL1415 (1991).
17 Moon, B.K. and Ishiwara, H., Jpn. J. Appl. Phys. 33, p 1472 (1994).
18 McKee, R., Walker, F. and Chisholm, M., Phys. Rev. Lett. 81, p3014 (1998).
19 McKee, R., Walker, F. and Chisholm, M., Mater. Res. Soc. Symp. Proc. 567, p415 (1999).
20 Yu, Z., Droopad, R., Ramdani, J., J.Curless, A., Overgaard, C.D., Finder, J.M., Eisenbeiser, K., Wang, J., Hallmark, J.A. and Ooms, W.J., Mater. Res. Soc. Symp. Proc. 567, p 427 (1999).
21 Tambo, T., Nakamura, T., Maeda, K., Ueba, H. and Tatsuyama, C., Jpn. J. Appl. Phys. 37, p4454 (1998).
22 Hallmark, J., Yu, Z., Droopad, R., Ramdani, J., Curless, J., Overgaard, C., Finder, J., Marshall, D., Wang, J. and Ooms, B., Integrated Ferroelectrics 27, p41 (1999).
23 Sanchez-Portal, Daniel, Ordejon, Pablo, Artcho, Emilo, Soler, Jose M.; Inter J. of Quantum Chem. 65, p453 (1997).
24 Sankey, O. F., Niklewski, D. J., Phys Rev B 40, p3979 (1989).
25 Troullier, N. Martins, J. L., Phys Rev B 43, p 1993 (1991).
26 Wang, J., Hallmark, J. A., Marshall, D. S., Ooms, W. J., Ordejon, P., unquera, J., Sanchez-Portal, D., Artacho, E., Soler, J. M., Phys Rev B 60, p4968 (1999).
27 Cheng, B., Cao, M., Rao, R., Inani, A., Voorde, P., Greene, W., Stork, H., Yu, Z., Woo, J., IEEE Transaction on Electron Devices, 46, p1537 (1999).
28 Hauser, J.R. and Ahmed, K., “Characterization of Ultra-Thin Oxides Using Electrical C-V and I-V Measurements,” Characterization and Metrology for ULSI Technology: 1998 International Conference, p235, (1998)
29 Terman, L.M., Solid-State Electronics, 5, p285, (1962)
30 Robertson, J., Chen, C.W., “Schottky Barrier Heights of Tantalum Oxide, barium Strontium Titanate, Lead Zirconate Titanate and Strontium Bismuth Tantalate,” MRS Symposium Proceedings, Dec. (1998).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed