Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T15:44:34.020Z Has data issue: false hasContentIssue false

Epitaxial Growth of TbSi2 on Si(111)

Published online by Cambridge University Press:  28 February 2011

F.H. Kaatz
Affiliation:
Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia PA 19104-6202
W.R. Graham
Affiliation:
Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia PA 19104-6202
J. Van der Spiegel
Affiliation:
Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia PA 19104-6202
Get access

Abstract

We describe the epitaxial growth of TbSi2. In this study, terbium metal is evaporated onto (111) silicon and annealed to form terbium suicide, where the pressure during all procedures is maintained below 5×10-10 Torn The interdiffusion of terbium with silicon occurs at room temperature as determined by in-situ Auger electron spectroscopy. Low energy electron diffraction shows a sharp pattern of the hexagonal suicide after an 850°C anneal. Rutherford backscattering analysis indicates single-crystal growth with a channeling minimum yield of 7–8% for 120Å thick suicide films annealed to 800–900°C. These metal reacted films have pinholes with an average size of less than 0.5 µm and a fault structure along (220) silicon. Electrical measurements show metallic conduction with a room temperature resistivity of 110 µΩ-cm and evidence of magnetic ordering at 38K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Tung, R.T., in Silicon Molecular Beam Epitaxy, edited by Kasper, E. and Bean, J.C., Vol. II, CRC Press, Boca Raton, FL, 1988.Google Scholar
2Iandelli, A., Palenzona, A., and Olcese, G.L., J. Less. Common Met. 64, 213 (1979).Google Scholar
3Knapp, J.A. and Picraux, S.T., Appl. Phys. Lett. 48, 466 (1986).Google Scholar
4Baglin, J.E., d’eurle, F.M., and Peterson, C.S., Appl. Phys. Lett. 36, 594 (1980).Google Scholar
5Norde, H., de Sousa Pines, J., d’eurie, F., Pesavento, F., Petersson, S., and Tove, P.A., Appl. Phys. Lett. 38, 865 (1981).Google Scholar
6Tu, K.N., Thompson, R.D., and Tsaur, B.Y., Appl. Phys. Lett. 38, 626 (1981).Google Scholar
7Duboz, J.Y., Badoz, P.A., Arnaud d’Avitaya, F., and Chroboczek, J.A., Appl. Phys. Lett. 55, 84 (1989).Google Scholar
8Thompson, R.D., Tsaur, B.Y., and Tu, K.N., Appl. Phys. Lett. 38, 535 (1981).Google Scholar
9Mayer, I.P., Banks, E., and Post, B., J. Chem. Phys. 66, 693 (1962).Google Scholar
10Gladyshevskii, E.I., Dokl. Akad. Nauk SSSR 7, 886 (1963).Google Scholar
11Sekizawa, K. and Yasukoshi, K., J. Phys. Soc. Japan 21, 274 (1966).Google Scholar
12Pierre, J., Siaud, E., and Frachon, D., J. Less Comm. Metals 139, 321 (1988).Google Scholar
13Narasimhan, K. and Steinfink, H., J. Solid State Chem. 10, 137 (1974).Google Scholar
14Siegal, M.P., Kaatz, F.H., Graham, W.R., Van der Spiegel, J., and Santiago, J.J., Appl. Surf. Sci. 38, 162 (1989).Google Scholar
15Kaatz, F.H., Graham, W.R., and Van der Spiegel, J., Thin Solid Films, to be published.Google Scholar
16Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 656 (1986).Google Scholar
17van der Pauw, L.J., Philips Res. Repts. 13, 1 (1938).Google Scholar
18Tung, R.T. and Batstone, J.L., Appl. Phys. Lett. 52, 648 (1988).Google Scholar
19Lin, T.L., Fathauer, R.W., Grunthaner, P.J., and d’Anterroches, C., Appl. Phys. Lett. 52, 804 (1988).Google Scholar
20Tung, R.T., Gibson, J.M., and Poate, J.M., Phys. Rev. Lett. 50, 429 (1983).Google Scholar
21Woolf, L.D., Sol. State Commun. 47, 519 (1983).Google Scholar
22Seryuk, Y.V., Krentsis, R.P., and Gel’d, P.V., Fiz. Tverd. Tela. 24, 3141 (1982) [Sov. Phys. Solid State, 24, 1779 (1982).]Google Scholar