Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T03:59:03.593Z Has data issue: false hasContentIssue false

Epitaxial Growth of Single Crystalline Ge Films on GaAs Substrates for CMOS Device Integration

Published online by Cambridge University Press:  01 February 2011

Hock-Chun Chin
Affiliation:
g0600087@nus.edu.sg, National University of Singapore, Department of Electrical and Computer Engineering, Silicon Nano Device Laboratory, Singapore, 119260, Singapore
Ming Zhu
Affiliation:
nnizm@nus.edu.sg, National University of Singapore, Department of Electrical and Computer Engineering, Silicon Nano Device Laboratory, Singapore, 119260, Singapore
Ganesh Samudra
Affiliation:
eleshanr@nus.edu.sg, National University of Singapore, Department of Electrical and Computer Engineering, Silicon Nano Device Laboratory, Singapore, 119260, Singapore
Yee-Chia Yeo
Affiliation:
eleyeoyc@nus.edu.sg, National University of Singapore, Department of Electrical and Computer Engineering, Silicon Nano Device Laboratory, Singapore, 119260, Singapore
Get access

Abstract

We report a novel chemical vapor deposition (CVD) process for epitaxial growth of Ge film on GaAs substrate. The resultant layer exhibits device level quality, as shown by high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, high-resolution X-ray diffraction (HRXRD). In addition, atomic force microscopy (AFM) scanning indicates low RMS surface roughness of 5 Å. Secondary ion mass spectrometry (SIMS) reveals negligible out-diffusion of Ga and As into the Ge epilayer. By employing silane passivation, Ge p-MOSFET with TaN/HfO2 gate stack was fabricated on Ge/GaAs heterostructure for the first time, showing excellent output and pinch-off characteristics. A GaAs channel n-MOSFET was also fabricated, using similar SiH4 treatment during gate stack formation. These results reveal a potential solution to integrate Ge p-channel and GaAs n-channel MOSFET for advanced CMOS applications.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rajagopalan, K. Abrokwah, J. Droopad, R. and Passlack, M. IEEE Electron Device Lett. 27, 959 (2006).Google Scholar
2. Ok, I. Kim, H. Zhang, M. Lee, T. Zhu, F. Yu, L. Koveshnikov, S. Tsai, W. Tokranov, V. Yakimov, M. Oktyabrsky, S. and Lee, J. C. IEDM Tech. Dig. 829 (2006).Google Scholar
3. Zimmerman, P. Nicholas, G. Jaeger, B. De, Kaczer, B. Stesmans, A. Ragnarsson, L.-A., Brunco, D. P. Leys, F. E. Caymax, M. Winderickx, G. Opsomer, K. Meuris, M. and Heyns, M. M. IEDM Tech. Dig. 655 (2006).Google Scholar
4. Bai, W. P. Lu, N. Liu, J. Ramirez, A. Kwong, D. L. Wristers, D. Ritenour, A. Lee, L. and Antoniadis, D. VLSI Symp. Tech. Dig. 121 (2003).Google Scholar
5. Wu, N. Zhang, Q. C. Zhu, C. X. Yeo, C. C. Whang, S. J. D. Chan, S. H. Li, M. F. Cho, B. J. Chin, A. Kwong, D.L. Appl. Phys. Lett. 84, 3741 (2004).Google Scholar
6. Gao, F. Lee, S. J. Chi, D. Z. Balakumar, S. and Kwong, D.L. Appl. Phys. Lett. 90, 252 904 (2007).Google Scholar
7. Wu, N. Zhang, Q. C. Zhu, C. X. Chan, D. S. H. Balasubramanian, N. Chin, A. and Kwong, D. L. Appl. Phys. Lett. 85, 4127 (2004).Google Scholar
8. Zhu, M. Chin, H.C. Tung, C.H. and Yeo, Y.C. Electrochemical, J. Society 54, H879 (2007).Google Scholar
9. Frank, M. M. Wilk, G. D. Starodub, D. Gustafsson, T. Garfunkel, E. Chabal, Y. J. Grazul, J. and Muller, D. A. Appl. Phys. Lett. 86, 152904 (2005).Google Scholar
10. Arthur, J. R. Surface Science 43, 449 (1974).Google Scholar