Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:26:04.862Z Has data issue: false hasContentIssue false

The Epitaxial Growth of Copper on the (111) Surface of Silicon

Published online by Cambridge University Press:  21 February 2011

F. J. Walker
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6118
J. R. Conner
Affiliation:
Cornell University, Ithaca, NY
R. A. Mckee
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6118
Get access

Abstract

The progression of the epitaxy of Cu(111) on Si(111) has been studied using surface sensitive techniques and the as-grown film studied using high resolution transmission electron microscopy (HRTEM). A molecular beam epitaxy (MBE) system has been used to deposit films on 3-inch-diameter silicon substrates. Across this large area a graded thickness of 0 to 10 nm of copper was deposited and scanned using Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). For films grown at 373 K, silicon alloys with the copper up to a thickness of 5.0 rim. LEED indicates an ordered R30°-√3×√3 Cu(111) surface which results from the alloying of copper and silicon. HRTEM images from the interface region show the alloy to be 2.3 nm thick, crystalline, and epitaxial to the Si(111) surface. There are indications that the interface alloy may be a metastable copper silicide. This alloy is important in the mechanism for the growth of Cu(111) on Si(111).

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tung, R.T., Silicon Molecular Beam Epitaxv. Volume II edited by Erich, Kasper and Bean, John C. (CRC Press, Inc. 1988), p. 13.Google Scholar
2. McKee, R.A., Walker, F J., and Conner, J.R., unpublished result.Google Scholar
3. Zur, A- and McGill, T.C., J. Appl. Phys. L 55(2), 378 (1984).Google Scholar
4. Yamada, I., Inokawa, H., and Takagi, T., Thin Solid Films 124, 179 (1985).Google Scholar
5. Rossi, G., Kendelewicz, T., Lindau, I., and Spicer, W.E., I. Vac. Sci. Technol. A 1(2), 987 (1983).Google Scholar
6. Corn, S. H., Falconer, J. L., and Czanderna, A.W., J. Vac. Sci. Technol. A 6(3), 1012 (1988)Google Scholar
7. Ringeisen, F., Derrien, J., Daugy, E., Layet, J.M., Mathiez, P., and Salvan, F., J. Vac. Sci. Technol. B 1(3), 546 (1983).Google Scholar
8. Taleb-Ibrahimi, A., Mercier, V., Sebenne, C.A., Bolmont, D., and Chen, P., Surf. Sci. 152/153 1228 (1985).Google Scholar
9. Ward, W.J. and Carroll, K.M., J. Electrochem. Soc. 129(1), 227 (1982).Google Scholar
10. Egelhoff, W.F. Jr., J. Vac. Sci. Technol. A 7(3), 2060 (1989).Google Scholar
11. Daugy, E., Mathiez, P., Salvan, F., Layet, J.M., and Derrien, J., Surf. Sci. 152/153 1239 (1985).Google Scholar
12. Walker, F.J., Specht, E.D., and McKee, R.A., unpublished result.Google Scholar
13. Solberg, J. K., Acta Cryst. A34, 684 (1978).Google Scholar